Study is first to explain type of antimalarial drug resistance

November 20, 2013

WASHINGTON -- A Georgetown University professor published in the online journal PLOS ONE the first study explaining why drugs designed to fight off malaria stop working in some people with the disease.

Malaria, a mosquito-borne disease caused by a parasite, killed more than 650,000 people in 2010 - most of them children in Africa, according to the World Health Organization.

While several antimalarial drugs have successfully treated the disease, in some regions they no longer work due to drug resistance. Given that just last month the CDC reported that malaria cases in the U.S. reached a 40-year high, this research is particularly timely.

A Global Threat


"Resistance to antimalarial medication threatens the health of more than half of the world's population," notes corresponding Paul Roepe, PhD, a Georgetown chemistry professor who authored the study with colleagues at the University of Notre Dame and the University of Kentucky.

Many antimalarial drugs both slow the growth of malarial parasites, and, at higher doses or over longer periods of time, also kill the malarial parasites.

"Until now, no studies have separated how resistance to these two different drug actions might work," says Roepe, also a professor of biochemistry and cell and molecular biology and co-founder of Georgetown's Center for Infectious Disease at Georgetown University Medical Center. "Our study found genetic and cell biological evidence linking autophagy to resistance to the parasite, which kills the effects of drugs."

Important Implications


Autophagy, Roepe explains, is the process by which cells remove damaged parts of themselves to restore normal function. In this case, the cell rids itself of the parts damaged by the antimalarial drug. Roepe worked with two alumni of the chemistry Ph.D. program, David Gaviria (G'13) and Michelle Paguio (G'09), as well as current student Ph.D. chemistry student Amila Siriwardana (G'16) on the research.

The professor and his colleagues demonstrated in their study that while resistance to drugs like chloroquine, which works to slow the growth of malaria, has been explored, an explanation of the resistance to the cell-destroying effects of the medication has not been fully understood.

"These results have important implications in the ongoing development of new antimalarial drug therapy," Roepe says. "We hope that by publishing this work in an open access journal, more researchers will access it and can expedite drug development.
-end-
This research was supported by grants from the National Institutes of Health (RO1 AI045957, RO1AI49367, RO1 AI071121) and by a Kentucky Science and Engineering Foundation award. The authors declare no conflict of interest.

About Georgetown University


Established in 1789, Georgetown is the nation's oldest Catholic and Jesuit university. Drawing upon this legacy, we provide students with a world-class learning experience focused on educating the whole person through exposure to different faiths, cultures and beliefs. With our Jesuit values and location in Washington, D.C., Georgetown offers students a distinct opportunity to learn, experience and understand more about the world.

Georgetown University Medical Center

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.