Nav: Home

What's in your wheat? Johns Hopkins scientists piece together genome of most common bread wheat

November 20, 2017

Johns Hopkins scientists report they have successfully used two separate gene technologies to assemble the most complete genome sequence to date of Triticum aestivum, the most common cultivated species of wheat used to make bread.

A report on the achievement was published in the Oct. 23 issue of GigaScience just a few weeks before their related report on the sequencing of the bread wheat's "ancestor," Aegilops tauschii, published Nov. 15 in Nature.

Together, they say, the wheat genome sequences may help biologists not only better understand the evolutionary history of wheat, but also advance the quest for hardier, more pest- and drought-resistant wheat types to help feed the world's growing population.

"After many years of trying, we've finally been able to produce a high-quality assembly of this very challenging genome," says Steven Salzberg, Ph.D., Bloomberg Distinguished Professor of Biomedical Engineering at the Johns Hopkins University Whiting School of Engineering and the McKusick-Nathans Institute of Genetic Medicine at the Johns Hopkins University School of Medicine.

According to the Johns Hopkins scientists, bread wheat has one of the most complex genomes known to science, containing an estimated 16 billion base pairs of DNA and six copies of seven chromosomes. By comparison, the human genome is about five times smaller, with about three billion base pairs and two copies of 23 chromosomes. Previously published versions of the bread wheat genome have contained large gaps in its highly repetitive DNA sequence.

"The repetitive nature of this genome makes it difficult to fully sequence," says Salzberg. "It's like trying to put together a jigsaw puzzle of a landscape scene with a huge blue sky. There are lots of very similar, small pieces to assemble."

The newly assembled bread wheat genome, which cost $300,000 for the sequencing alone, took a year for the Johns Hopkins researchers to assemble 1.5 trillion bases of raw data into a final assembly of 15.34 billion base pairs.

To do it, Salzberg and his team used two types of genome sequencing technology: high throughput and nanopore sequencing. As its name implies, high throughput sequencing generates massive amounts of DNA base pairs very quickly and cheaply, although the fragments are very short--just 150 base pairs long for this project. To help assemble the repetitive areas, the Johns Hopkins team used nanopore sequencing, which forces DNA through tiny pores with an electric current running through them. The technology enables scientists to read up to 20,000 base pairs at a time by measuring changes in the flow of the current as a strand of DNA passes through the pore.

Salzberg says that sequencing a genome of this size requires not only genetic expertise, but also very large computing resources available at relatively few research institutions around the world. The team relied heavily on the Maryland Advanced Research Computing Center, a computing center shared by Hopkins and the University of Maryland, which has over 20,000 computer cores (CPUs) and over 20 petabytes of data storage. The team used approximately 100 CPU years to put this genome together.

Salzberg and his team also participated in the collaborative effort reported in the journal Nature to sequence an ancestral type of wheat, Aegilops tauschii, which is commonly referred to as goatgrass and still found in parts of Asia and Europe. Its genome is approximately one-third the size of the bread wheat genome, but has similar levels of repetition. The work, done as part of a collaborative effort between the University of California, Davis; Johns Hopkins; and the University of Georgia, took approximately four years to complete. Using ordered-clone genome sequencing, shotgun sequencing and optical genome mapping, the team pieced together the 4.3 billion nucleotides that make up the plant's genetic sequence. With this information, the rest of the team was able to identify sequences that make up the genes responsible for specific characteristics in the plant.
-end-
Other researchers involved with the bread wheat study included Aleskey V. Zimin and Daniela Puiu, both members of Salzberg's laboratory in the Center for Computational Biology at the McKusick-Nathans Institute of Genetic Medicine; Sarah Kingan and Richard Hall of Pacific Biosciences in Menlo Park, California; and Bernardo J. Clavijo of the Earlham Institute in Norwich, United Kingdom.

This work was supported in part by the National Science Foundation (IOS-1238231 and IOS-1444893) and the National Human Genome Research Institute (R01 HG006677).

Johns Hopkins Medicine

Related Dna Articles:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.
Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.
Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.
Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.
Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.
Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.