Nav: Home

Protein intentionally terminates own synthesis by destabilizing synthesis machinery -- the ribosome

November 20, 2017


Proteins are functional molecules, which support life and are three-dimensional structures of polypeptide chains, chains of linked amino acids. The configuration of amino acids on this chain (the sequence) is written in the DNA sequence. Polypeptide chains are formed where the ribosome, the protein synthesis machinery, resides on a copy of the DNA sequence (messenger RNA). It starts polymerizing amino acids one by one by selecting from 20 types of amino acids to add to the link according to the genetic code. It is completed at the endpoint where the chain detaches from the ribosome.

The process of a protein being synthesized at a ribosome is called "translation," and all proteins of all living organisms, including humans, are produced through translation. It had been thought that, in the process of linking amino acids at the ribosome, the newly formed polypeptide chain (nascent chain) was synthesized continuously.

In recent studies by this research group and others, it has become apparent that fluctuation in speed occurs significantly in translation--that some nascent chains, depending on the amino acid sequence, act on the ribosome that is forming it to slow down the translation steptime.

Overview of the Research Achievement

The research group led by Hideki Taguchi at Tokyo Tech and Koreaki Ito at Kyoto Sangyo University found that, when a reconstituted cell-free translation system[2] of E. coli was made to translate proteins having sequences of about ten acidic amino acids (aspartic and glutamic acids) or sequences in which either acidic amino acid and an amino acid called proline are linked alternately, translation stops midway when such a sequence has been translated. This abortive event occurs when the ribosomes synthesizing the amino acid sequence become destabilized as a result of being acted on by the nascent chain (the researchers designate this "IRD": "intrinsic ribosome destabilization"). It results in the ribosome splitting apart into the large and small subunits (Figure 1). The ribosome, with its role of synthesizing several thousands or tens of thousands of types of proteins within the cell, had been thought to be in command in linking any combinations of amino acid sequences. However, the discovery of IRD, in which the ribosome is destabilized during translation by nascent chains it itself is synthesizing, indicates that translation is something which progresses with the potential risk of being aborted. Proteins which include amino acid sequences that trigger IRD are not able to complete their syntheses.

At first glance, this phenomenon of IRD may seem like a defect of the ribosome, but what does it indicate for living organisms?

The researchers had discovered that living organisms also possess a mechanism to counteract IRD. This finding led them to use a mutant of E. coli missing this mechanism, with ribosomes thus slightly destabilized and prone to IRD, and analyze all the protein inside a cell (the proteome). As a result, the team found that, in the mutant, the cellular amounts of a number of proteins varied when compared to the wild strain. In particular, MgtA, a membrane protein which transports magnesium ion into cells, was found to be expressed over ten times more. Interestingly, the gene called mgtL and regulating the expression of MgtA possessed an IRD sequence. The result of the analysis showed that E. coli regulates the expression of MgtA, using a special mechanism featuring the IRD phenomenon due to the sequence of mgtL, in response to changes in the magnesium concentrations in the cell.

Magnesium ions are necessary for many life processes inside the cell, and is required for translation, in particular, to stabilize the ribosome. Thus, the findings of this research suggest that E. coli acquired a mechanism for maintaining the cellular magnesium ion concentration by using mgtL's IRD ability to express an abundance of MgtA when its growth environment becomes poor in magnesium. In other words, a living organism has a mechanism for monitoring changes in the intracellular environment by taking advantage of the phenomenon of IRD (Figure 2).

Future developments

This study revealed that, in addition to containing information that determines three-dimensional structures of proteins, amino acid sequences even hold the ability to influence the stability of the machinery synthesizing it and to abort translation mid-cycle, eventually. This furthers our comprehension of the foundation of life processes, which are supported by regulated expression of genetic information. Early, premature cessation of translation had not been considered to be a vital process in the life sciences to date. Taguchi and the team members believe that their accomplishment can be expanded, in conjunction with the current prosperity of life sciences, to various applications such as the production of new useful proteins or the development of biopharmaceuticals.
[1] Ribosome: a large composite made of RNA and protein, which synthesizes protein constituents (polypeptide chains). It reads the nucleotide sequence of messenger RNAs and selects from the 20 types of amino acids according to the genetic code on the message, then connects them in the order specified.

[2] Reconstituted cell-free translation system: an in vitro protein synthesis system containing only the purified components necessary for synthesizing proteins.

Tokyo Institute of Technology

Related Amino Acids Articles:

Igniting the synthetic transport of amino acids in living cells
Researchers from ICIQ's Ballester group and IRBBarcelona's Palacín group have published a paper in Chem showing how a synthetic carrier calix[4]pyrrole cavitand can transport amino acids across liposome and cell membranes bringing future therapies a step closer.
Microwaves are useful to combine amino acids with hetero-steroids
Aza-steroids are important class of compounds because of their numerous biological activities.
New study finds two amino acids are the Marie Kondo of molecular liquid phase separation
a team of biologists at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) have identified unique roles for the amino acids arginine and lysine in contributing to molecule liquid phase properties and their regulation.
Prediction of protein disorder from amino acid sequence
Structural disorder is vital for proteins' function in diverse biological processes.
A natural amino acid could be a novel treatment for polyglutamine diseases
Researchers from Osaka University, National Center of Neurology and Psychiatry, and Niigata University identified the amino acid arginine as a potential disease-modifying drug for polyglutamine diseases, including familial spinocerebellar ataxia and Huntington disease.
Alzheimer's: Can an amino acid help to restore memories?
Scientists at the Laboratoire des Maladies Neurodégénératives (CNRS/CEA/Université Paris-Saclay) and the Neurocentre Magendie (INSERM/Université de Bordeaux) have just shown that a metabolic pathway plays a determining role in Alzheimer's disease's memory problems.
New study indicates amino acid may be useful in treating ALS
A naturally occurring amino acid is gaining attention as a possible treatment for ALS following a new study published in the Journal of Neuropathology & Experimental Neurology.
Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.
To make amino acids, just add electricity
By finding the right combination of abundantly available starting materials and catalyst, Kyushu University researchers were able to synthesize amino acids with high efficiency through a reaction driven by electricity.
Nanopores can identify the amino acids in proteins, the first step to sequencing
While DNA sequencing is a useful tool for determining what's going on in a cell or a person's body, it only tells part of the story.
More Amino Acids News and Amino Acids Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.