Nav: Home

Uncovering essential enzymes for plant growth during nitrogen starvation

November 20, 2017

How plants tolerate nitrogen starvation is a longstanding mystery. Nitrogen is vital for the production of amino acids, the building blocks of plant proteins, and many other components needed to sustain life. Researchers in Japan have now found that two enzymes involved in lipid biosynthesis[2] called PAH1 and PAH2 are essential for plant growth during nitrogen starvation. The finding advances fundamental knowledge of the processes regulating plant growth.

Published in Frontiers in Plant Science, the research was a result of collaboration between scientists from Tokyo Tech, the University of Tokyo and Tokyo University of Pharmacy and Life Sciences.

By studying a small flowering plant called Arabidopsis thaliana, the team showed that switching off two genes, PAH1 and PAH2, (in a process known as double knockout) led to increased sensitivity to nitrogen starvation. Arabidopsis is a popular choice among plant biologists due to its relatively short life cycle (of around two months) and small genome size (of around 135 megabase pairs), making it ideal for use as a model species.

The team compared the chlorophyll content and photosynthetic activity of the double knockout plants, transgenic plants that had been modified to produce more of (or overexpress) PAH1 and PAH2, and wild-type plants. The double knockout plants were found to have lower chlorophyll content than in the wild type under nitrogen-depleted conditions. Remarkably, the team found that transgenic plants showed a higher amount of chlorophyll and greater photosynthetic activity than the wild-type plants under nitrogen starvation (see Figure 1).

Mie Shimojima of School of Life Science and Technology, Tokyo Tech, says that the study builds on around 20 years of work conducted by her research group on membrane lipid remodeling under inorganic phosphate (Pi)-depleted conditions.

"When plants suffer Pi starvation, phospholipids in the cellular membranes are degraded and replaced with glycolipids, or sugar-containing lipids; this is how plants survive the Pi shortage," says Shimojima. "In 2009, our colleagues Yuki Nakamura and others showed that PAH1 and PAH2 are crucial for plant growth under Pi-depleted conditions."

Growing evidence in recent years suggested that plant response to Pi starvation and nitrogen starvation might be related. "That's why we analyzed nitrogen starvation tolerance in the Arabidopsis plant lacking PAH1 and PAH2," says Shimojima. "Our study reinforces the view that the Pi starvation-induced lipid remodeling mechanism is also involved in the nitrogen starvation response."

"All of our findings so far indicate that PAH1 is involved in some kind of repair process or maintenance of chloroplast membrane structures," she continues. "However, since PAH is a cytosolic[3] enzyme, there may be other essential proteins involved in this mechanism within the membrane."

Further studies will be needed to unravel the molecular mechanisms underlying nitrogen starvation tolerance and to explore how this knowledge may be used in agricultural and biotechnological applications.
-end-
Technical terms

[1] PAH1 and PAH2: Phosphatidic acid phosphohydrolases -- key regulatory enzymes.

[2] Lipid biosynthesis: The reactions and pathways involved in the production of lipids, which provide energy for metabolic processes and structural components for cell membranes.

[3] Cytosolic: Referring here to an enzyme found within the cytosol, the aqueous part of a plant cell.

Tokyo Institute of Technology

Related Nitrogen Articles:

Reducing nitrogen with boron and beer
The industrial conversion of nitrogen to ammonium provides fertiliser for agriculture.
New nitrogen products are in the air
A nifty move with nitrogen has brought the world one step closer to creating a range of useful products -- from dyes to pharmaceuticals -- out of thin air.
'Black nitrogen'
In the periodic table of elements there is one golden rule for carbon, oxygen, and other light elements.
A deep dive into better understanding nitrogen impacts
This special issue presents a selection of 13 papers that advance our understanding of cascading consequences of reactive nitrogen species along their emission, transport, deposition, and the impacts in the atmosphere.
How does an increase in nitrogen application affect grasslands?
The 'PaNDiv' experiment, established by researchers of the University of Bern on a 3000 m2 field site, is the largest biodiversity-ecosystem functioning experiment in Switzerland and aims to better understand how increases in nitrogen affect grasslands.
Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.