Nav: Home

Diabetes drug helps repair UV-damaged DNA in cells of 'Moon children'

November 20, 2017

(Vienna, Nov. 17, 2017) The destructive force of UV radiation on DNA molecules is only fully visible, when repair mechanisms fail: patients with the rare genetic disease Xeroderma pigmentosum - also known as "Moon children' - develop inflammations upon exposure to only small amounts of sunlight, rough-surfaced growths and eventually skin cancer occurs often in early age. The severe condition is caused by mutations in the genes for the nucleotide excision repair (NER) pathway - the only known mechanism that deals with UV-induced DNA damage in human cells. Although first described in 1874, Xeroderma pigmentosum to date lacks any curative treatment.

Led by Joanna Loizou, Principal Investigator at the CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and together with collaborators from the Medical University of Vienna and the IRB Barcelona, the scientists at CeMM found in their most recent publication that the FDA-approved diabetes drug acetohexamide significantly improves the resilience of NER deficient cells against UV radiation in vitro. Above that, the study published in Molecular Cell (DOI: 10.1016/j.molcel.2017.10.021) identified the responsible molecular mode of action - a hitherto unknown, NER-independent repair mechanism for UV-induced DNA damage. The study has not tested the use of acetohexamide in Xeroderma pigmentosum patients.

For their study, the scientists of Loizou's team developed a special chemical screening approach for compounds that would allow Xeroderma pigmentosum-disease cells to survival UV treatment better. Using the CLOUD (Cemm Library of Unique Drugs), this approach led to the identification of acetohexamide: By treating Xeroderma pigmentosum-disease cells with the diabetes drug, these cells could now repair UV-induced DNA damage more efficiently. A multitude of subsequent experiments eventually led to the elucidation of the underlying molecular mechanism: acetohexamide leads to the degradation of the DNA repair enzyme MUTYH, triggering an hitherto unknown NER-independent mechanism for removing UV-induced DNA damage.

"MUTYH has not been previously implicated in the removal of UV-induced lesions," emphazises Abdelghani Mazouzi, first author of the study. "However, our data collectively show that the anti-diabetic drug acetohexamide can alleviate the sensitivity of NER-deficient cells and enhance the repair of UV lesions through the degradation of MUTYH." "Loss of MUTYH allows Xeroderma pigmentosum-disease cells to deal with UV-induced DNA damage more proficiently" Joanna Loizou summarizes. "Those findings are not only a valuable contribution to the fundamental, molecular understanding of DNA repair, but could also pave the way for a novel therapeutic approach for this severe and debilitating disease, for which there is no curative treatment".
-end-
Attached picture: Visualization of the DNA repair proteins XPC (in green) and MUTYH (in red) to sites of UV-induced DNA damage within the nucleus (in blue), within a human cell. (© CeMM/ Abdelghani Mazouzi)

The study "Repair of UV-Induced DNA Damage Independent of Nucleotide Excision Repair Is Masked by MUTYH " was published in Molecular Cell on November 16, 2017. DOI: 10.1016/j.molcel.2017.10.021

Authors: Abdelghani Mazouzi, Federica Battistini, Sarah C. Moser, Joana Ferreira da Silva, Marc Wiedner, Michel Owusu, Charles-Hugues Lardeau, Anna Ringler, Beatrix Weil, Jürgen Neesen, Modesto Orozco, Stefan Kubicek and Joanna I. Loizou

The study was funded by the Austrian Academy of Sciences, the European Commission, the Austrian Science Fund, the Austrian Federal Ministry of Science, Research and Economy, the National Foundation for Research, Technology, and Development, the Spanish Ministry of Science the Catalan Government, the Instituto de Salud Carlos III-Instituto Nacional de Bioinformática, and the European Research Council ERC.

Joanna Loizou received her Ph.D. at the University of Manchester and Sussex with Keith Caldecott, and carried out post-doctoral research at the International Agency for Research on Cancer, Lyon, France with Zhao-Qi Wang and Zdenko Herceg and later at the London Research Institute, CRUK, England with Axel Behrens. She joined CeMM in 2011. http://cemm.at/research/groups/joanna-i-loizou-group/

The mission of CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences is to achieve maximum scientific innovation in molecular medicine to improve healthcare. At CeMM, an international and creative team of scientists and medical doctors pursues free-minded basic life science research in a large and vibrant hospital environment of outstanding medical tradition and practice. CeMM's research is based on post-genomic technologies and focuses on societally important diseases, such as immune disorders and infections, cancer and metabolic disorders. CeMM operates in a unique mode of super-cooperation, connecting biology with medicine, experiments with computation, discovery with translation, and science with society and the arts. The goal of CeMM is to pioneer the science that nurtures the precise, personalized, predictive and preventive medicine of the future. CeMM trains a modern blend of biomedical scientists and is located at the campus of the General Hospital and the Medical University of Vienna. http://www.cemm.at

For further information please contact

Mag. Wolfgang Däuble
Media Relations Manager
CeMM
Research Center for Molecular Medicine of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Phone 43-1/40160-70 057
Fax 43-1/40160-970 000
wdaeuble@cemm.oeaw.ac.at
http://www.cemm.at

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences

Related Dna Repair Articles:

DNA repair - Locating and severing lethal links
Covalent cross-links between proteins and DNA are among the most hazardous types of DNA damage.
When it comes to DNA repair, it's not one tool fits all
Researchers at UT Health San Antonio studied double-strand breaks with complex damage and found that enzyme tools to resect the breaks are highly specific to the type of break to be repaired.
First systematic report on the tug-of-war between DNA damage and repair
IBS scientists have screened almost 163,000 DNA mutations in 2,700 C. elegans roundworms to shed light on DNA damage.
DNA damage and faulty repair jointly cause mutations
By analysing genomic data from worms, scientists detailed how mutations are caused by a combination of DNA damage and inaccurate repair.
Helping a helper: Uncovering how different proteins cooperate in DNA repair
DNA is critical for life as we know it. Ensuring that DNA is kept in a stable state is therefore important in all organisms.
Better plant edits by enhancing DNA repair
A protein hijacked from a bacterial pathogen helps to facilitate more precise genome editing in plants.
Scientists reveal how proteins team up to repair DNA
Scientists have revealed an important mechanism in the repair of DNA double-strand breaks, according to new research published today in eLife.
New repair mechanism for DNA breaks
Researchers from the University of Seville and the Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER) have identified new factors that are necessary for the repair of these breaks.
What does DNA's repair shop look like? New research identifies the tools
A team of scientists has identified how damaged DNA molecules are repaired inside the human genome, a discovery that offers new insights into how the body works to ensure its health and how it responds to diseases that stem from impaired DNA.
Transforming DNA repair errors into assets
A new bioinformatics tool, MHcut reveals that a natural repair system for DNA damage, microhomology-mediated end joining, is probably far more common in humans than originally assumed.
More DNA Repair News and DNA Repair Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.