Nav: Home

Spin current from heat: New material increases efficiency

November 20, 2017

Electronic devices such as computers generate heat that mostly goes to waste. Physicists at Bielefeld University have found a way to use this energy: They apply the heat to generate magnetic signals known as 'spin currents'. In future, these signals could replace some of the electrical current in electronic components. In a new study, the physicists tested which materials can generate this spin current most effectively from heat. The research was carried out in cooperation with colleagues from the University of Greifswald, Gießen University, and the Leibniz Institute for Solid State and Materials Research in Dresden. Their findings are being published today (20.11.2017) in the research journal 'Nature Communications'. The Bielefeld physicists are working on the basic principles for making data processing more effective and energy-efficient in the young field of 'spin caloritronics'. They are members of the 'Thin Films & Physics of Nanostructures' research group headed by Professor Dr. Günter Reiss. Their new study determines the strength of the spin current for various combinations of thin films.

A spin current is produced by differences in temperature between two ends of an electronic component. These components are extremely small and only one millionth of a millimetre thick. Because they are composed of magnetic materials such as iron, cobalt, or nickel, they are called magnetic nanostructures.

The physicists take two such nanofilms and place a layer of metal oxide between them that is only a few atoms thick. They heat up one of the external films - for example, with a hot nanowire or a focused laser. Electrons with a specific spin orientation then pass through the metal oxide. This produces the spin current. A spin can be conceived as electrons spinning on their own axes - either clockwise or anti-clockwise.

In their new study, Dr. Alexander Böhnke and Dr. Torsten Hübner together with their colleagues Dr. Timo Kuschel and Privatdozent Dr. Andy Thomas tested different combinations of ultra-thin films. Each time, they heated one of the external films in the same way. 'Depending on which material we used, the strength of the spin current varied markedly,' says Böhnke. 'That is because of the electronic structure of the materials we used.' Based on theoretical assumptions, the researchers were able to find suitable materials possessing the appropriate electronic structure. The measured strength of the spin current was up to ten times higher than that obtained with previously used materials. According to the researchers, magnetic nanostructures with special combinations made up of cobalt, iron, silicon, and aluminium were particularly productive.

The experiments conducted by the Bielefeld physicists were the product of a close cooperation with the team headed by Professor Dr. Markus Münzenberg from the Ernst Moritz Arndt University in Greifswald and Professor Dr. Christian Heiliger from the Justus Liebig University in Gießen. Dr. Andy Thomas started his research on this topic at Bielefeld University and is now continuing it at the Leibniz Institute for Solid State and Materials Research in Dresden.
-end-
The study is one of the projects in the 'Spin Caloric Transport' (SpinCaT) Priority Programme of the German Research Foundation (DFG). The research group 'Thin Films & Physics of Nanostructures' participated in four of the projects in the programme that ended this June.

Original publication:

Alexander Böhnke, Ulrike Martens, Christian Sterwerf, Alessia Niesen, Torsten Hübner, Marvin von der Ehe, Markus Meinert, Timo Kuschel, Andy Thomas, Christian Heiliger, Markus Münzenberg, and Günter Reiss: Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications. http://doi.org/10.1038/s41467-017-01784-x, published on the 20th of November 2017.

Further information:

Contact:

Dr. Timo Kuschel, Bielefeld University
Faculty of Physics
Telephone: 0521-106-5423
Email: tkuschel@physik.uni-bielefeld.de

Bielefeld University

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.