Nav: Home

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors grown in elaborate high vacuum systems. Now, a team of researchers from Penn State and Princeton University have taken a big step toward creating a diode laser from a hybrid organic-inorganic material that can be deposited from solution on a laboratory benchtop.

"It's usually not a big leap to turn a light emitting diode into a laser," said Chris Giebink, assistant professor of electrical engineering, Penn State. "You essentially just add mirrors and drive it harder. Once organic light-emitting diodes were invented 30 years ago, everybody thought that as soon as we had relatively efficient OLEDs, that an organic laser diode would soon follow."

As it turned out, organic diode lasers proved to be really hard to make.

An organic laser diode could have advantages. First, because organic semiconductors are relatively soft and flexible, organic lasers could be incorporated into new form factors not possible for their inorganic counterparts. While inorganic semiconductor lasers are relatively limited in the wavelengths, or colors, of light they emit, an organic laser can produce any wavelength a chemist cares to synthesize in the lab by tailoring the structure of the organic molecules. This tunability could be very useful in applications ranging from medical diagnostics to environmental sensing.

Nobody has yet succeeded in making an organic laser diode, but the key may well involve related materials -- organic/inorganic perovskites -- that have gotten a lot of attention in the research community over the last few years. This hybrid material has already been responsible for a meteoric rise in the efficiency of photovoltaics, Giebink said.

Perovskites are fairly common minerals that share a similar cubic crystal structure. Somewhat paradoxically, one of the reasons these hybrid perovskite materials work so well in solar cells is that they are good light emitters. For that reason, they are also of interest for use in LEDs and lasers. The material Giebink and his colleagues are studying is composed of an inorganic perovskite sublattice with relatively big organic molecules confined in the middle.

"The ultimate goal is to make an electrically driven perovskite laser diode," said Giebink. "That would be a game changer. It is fairly easy to make the perovskite material lase by optical pumping, that is, by shining another laser on it. However, this has only worked for very short pulses due to a poorly understood phenomenon we call lasing death. Getting it to go continuously is a key step toward an eventual electrically driven device. What we found in this recent study is a curious quirk. We can avoid lasing death entirely just by lowering the temperature of the material a little bit to induce a partial phase transition."

In a paper published online today (Nov. 20) in the journal Nature Photonics, Giebink and colleagues report the first "Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor."

"When we lowered the temperature below the phase transition, we were surprised to find that the material initially emitted light from the low temperature phase, but then changed over within 100 nanoseconds and began lasing from the high-temperature phase -- for over an hour," said Yufei Jia, a graduate student in Giebink's lab and lead author. "It turned out that as the material heated up, although most of the material remained in the low-temperature phase, small pockets of the high-temperature phase formed, and that was where the lasing was coming from."

In some inorganic lasers there are narrow regions called quantum wells where charge carriers can be trapped as the electrons and holes fall into the wells. The intensity of the lasing depends on how many charge carriers can be packed into the quantum wells. In the perovskite material, the arrangement of the high-temperature-phase inclusions inside the low temperature bulk seems to mimic these quantum wells and may play a role in enabling the continuous lasing.

"The jury is still out on this explanation," Giebink said. "It may be something more subtle."

Nevertheless, these results do point toward an opportunity to engineer a material that has the built-in qualities of this mixed phase arrangement, but without having to actually cool the material to low temperature. The current paper points to a couple of ideas for how those materials could be designed. The next big step then is to switch from optical pumping with an external laser to a perovskite laser diode that can be powered directly with electrical current.

"If we can solve the electrical pumping problem, perovskite lasers could turn into a technology with real commercial value," Giebink said.
-end-
In addition to Giebink and Jia, other contributors include Alex Grede, a graduate student in Giebink's lab, and Princeton assistant professor Barry Rand and his graduate student Ross Kerner.

The Air Force Office of Scientific Research, the National Science Foundation, DARPA and the Office of Naval Research supported this work.

Penn State

Related Laser Articles:

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.
A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.
Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.
The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.
The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.
Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.
Laser physics: Transformation through light
Laser physicists have taken snapshots of how C60 carbon molecules react to extremely short pulses of intense infrared light.
Laser-induced graphene gets tough, with help
Laser-induced graphene created at Rice University combines with many materials to make tough, conductive composites for wearable electronics, anti-icing, antimicrobial applications, sensors and water treatment.
How molecules teeter in a laser field
When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced.
Laser blasting antimatter into existence
Antimatter is an exotic material that vaporizes when it contacts regular matter.
More Laser News and Laser Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.