Nav: Home

Molecules in spit may be able to diagnose and predict length of concussions

November 20, 2017

Diagnosing a concussion can sometimes be a guessing game, but clues taken from small molecules in saliva may be able to help diagnose and predict the duration of concussions in children, according to Penn State College of Medicine researchers.

Researchers measured the levels of microRNAs -- tiny snippets of noncoding RNA -- in the saliva of concussion patients. They found that the presence of certain microRNAs in saliva was able to better identify concussions and more accurately predict the length of concussion symptoms than relying solely on patient surveys.

Steven Hicks, an assistant professor of pediatrics, said the findings -- published today (Nov. 20) in JAMA Pediatrics -- could result in a more fact-based way to diagnose and treat concussion patients.

"There's been a big push recently to find more objective markers that a concussion has occurred, instead of relying simply on patient surveys," Hicks said. "Previous research has focused on proteins, but this approach is limited because proteins have a hard time crossing the blood-brain barrier. What's novel about this study is we looked at microRNAs instead of proteins, and we decided to look in saliva rather than blood."

Concussions usually occur after a blow to the head -- for example, during sports or a car accident. They can result in such symptoms as headache, nausea, confusion, amnesia or lack of consciousness. While most concussions clear up within two weeks, about one-third of patients will experience symptoms longer.

Patients are usually advised to rest and stay away from such physical activity as sports or gym class until their symptoms subside. Hicks said that while it is important to give the brain enough time to heal, it is difficult to accurately predict how long patients should rest.

"As a general pediatrician, I often see children with concussions," Hicks said. "The tools we use to diagnose and manage concussions are subjective -- we do a physical exam and then have them answer a survey about their symptoms. Then, we make an educated guess about how long that child might continue to have a headache or feel nauseous. But those guesses aren't evidence-based and aren't always accurate."

MicroRNAs are found throughout the body and affect how genes are expressed depending on different conditions, like disease or injury. The researchers suspected these biomarkers might be able to predict the presence and length of concussions.

The researchers recruited 52 concussion patients between the ages of 7 and 21 for the study. Each participant was evaluated using the Sport Concussion Assessment Tool (SCAT-3) -- a common tool that doctors use to inventory concussion symptoms and severity -- within two weeks of their injury. The researchers also asked the patients' parents for their observations about their children's symptoms. This assessment was repeated four weeks after the injury occurred.

In the study, the researchers also collected saliva from each participant and analyzed for levels of different microRNAs. They then compared the microRNA profiles to the patient's symptoms at both the initial and follow-up assessments.

The researchers isolated five microRNAs that could accurately identify the participants who would experience prolonged symptoms. These microRNAs could correctly identify if a participant would have prolonged symptoms or not for 42 of 50 participants.

"The microRNAs were able to predict whether symptoms would last beyond four weeks with about 85 percent accuracy," Hicks said. "In comparison, using the SCAT-3 report of symptoms alone is about 64 percent accurate. If you just go off the parent's report of symptoms, it goes down to the mid-50s. In this pilot study, these molecular signatures are outperforming survey tools."

Hicks said predicting the length of concussions as early as possible would help ensure patients get the right care, and advise patients and parents on how long to expect symptoms to continue. For example, if a doctor knew a patient was going to have prolonged symptoms, they might put the patient on medicine right away instead of waiting to see if symptoms clear up on their own.

While more studies are needed, Hicks said he is hopeful that measuring microRNAs in saliva could one day be an accurate, quick way to diagnose and manage concussions.

"The ultimate goal is to be able to objectively identify that a concussion has happened and then predict how long the symptoms will go on for," Hicks said. "Then we can use that knowledge to improve the care that we provide for children who have concussions, either by starting medicine earlier or holding them out of activities for longer."
-end-
Penn State College of Medicine researchers Jeremiah J. Johnson, Andrea C. Loeffert, Jennifer Stokes, Robert P. Olympia and Harry Bramley also participated in this research.

The Children's Miracle Network and Quadrant Biosciences supported this work.

Penn State

Related Concussion Articles:

Diagnosing sports-related concussion in teens
Researchers investigated the effectiveness of using measurements of how pupils react to light as physiologic biomarker to help diagnose sports-related concussion in adolescents.
Should you really be behind the wheel after concussion?
Even after all of their symptoms are gone, people who have had a concussion take longer to regain complex reaction times, the kind you need in most real-life driving situations on the road, according to a preliminary study released today that will be presented at the American Academy of Neurology's Sports Concussion Virtual Conference from July 31 to August 1, 2020.
Biomarkers may help us understand recovery time after concussion
A blood test may help researchers understand which people may take years to recover from concussion, according to a study published in the May 27, 2020, online issue of Neurology®, the medical journal of the American Academy of Neurology.
Concussion alters how information is transmitted within the brain
Damage from concussion alters the way information is transmitted between the 2 halves of the brain, according to a new study.
Concussion recovery not clear cut for children
Sleep problems, fatigue and attention difficulties in the weeks after a child's concussion injury could be a sign of reduced brain function and decreased grey matter.
A concussion can cost your job -- especially if you are young and well educated
A seemingly harmless concussion can cause the loss of a job -- especially for patients who are in their thirties and for those with a higher education.
After concussion, biomarkers in the blood may help predict recovery time
A study of high school and college football players suggests that biomarkers in the blood may have potential use in identifying which players are more likely to need a longer recovery time after concussion, according to a study published in the July 3, 2019, online issue of Neurology, the medical journal of the American Academy of Neurology.
Concussion is a leading cause of injury for children in recreational sports
In a two-year study of children between ages 5-11 who play recreational sports, more suffered concussions than most any other sports-related injury.
Concussion symptoms reversed by magnetic therapy
Concussion symptoms -- such as loss of balance and ability to walk straight -- can be reversed by a new type of magnetic stimulation
Study paves way for better treatment of lingering concussion symptoms
The results of the study, released in Neuroscience journal, show that significant levels of fatigue and poorer brain function can persist for months, or even years, following concussion.
More Concussion News and Concussion Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.