Nav: Home

Video tags reveal surprising details of blue whale feeding behavior

November 20, 2017

The lunge feeding of blue whales is an extraordinary biomechanical event in which the largest animal on Earth accelerates and opens its mouth under water, expanding its enormous throat pouch to engulf a huge volume of water, then filtering out its prey (small crustaceans called krill) by forcing the water through sieve-like baleen plates.

"It's very costly energetically, but it's also very efficient because they get a lot of prey at once," said Ari Friedlaender, a researcher at the UC Santa Cruz Institute of Marine Sciences. Blue whales are "the ultimate example of efficient feeding," he said. Although energetic costs increase with body size, so does the efficiency because a larger mouth can process more water.

Friedlaender is lead author of a new study of blue whale feeding strategies that reveals surprising preferences in the massive whales with respect to how much and which direction they roll during lunge feeding. These preferences show how the need to maximize efficiency shapes the whales' feeding behavior.

The study, published November 20 in Current Biology, used data from sophisticated tags attached to the animals' backs that recorded video along with depth and movements in all directions. The tagging, which was done for a previous study of how blue whales respond to disturbances in the environment, yielded a rich set of data for a wide range of blue whale behaviors, Friedlaender said.

"We tagged 63 whales over six years, so we had a huge data set, and that allowed us to do this quantitative assessment of feeding behaviors," he said.

The researchers were particularly interested in "lateralized behaviors," seen in humans as a bias toward right-handedness and more generally in all vertebrates as a bias to the right side. Blue whales, they found, show a right-side bias in their most common feeding behavior, rolling about 90 degrees to the right side during most feeding lunges. But the researchers discovered one glaring exception.

"There's one particular situation where they do full 360-degree rolls, almost exclusively to the left side," Friedlaender said. "When we looked at their orientation during this maneuver, we found they tended to be approaching the surface from below at a steep angle and likely targeting small patches of prey."

By rolling to the left, the whale orients its right eye toward the surface and toward the prey it is trying to target. But what makes the right eye better than the left eye for targeting prey? That has to do with the wiring of the vertebrate nervous system and the specialization of the brain's left and right hemispheres.

The optic nerves that carry visual input from the eyes to the brain run contra-laterally, so the right eye connects to the left side of the brain and the left eye to the right side. The performance of routine actions is controlled predominantly by the left side of the brain, so the right eye provides more direct input to the control center than the left eye. According to Friedlaender, that seems to make enough of a difference that rolling to the left enables more efficient feeding than rolling to the right.

"The movements involved in targeting prey have to be coordinated, and when you think about how big a blue whale is, these are massive movements that take a long time to execute," Friedlaender said. "These are not squirrels racing around, they're the biggest animals on the planet."

The smaller rolls to the right when feeding at depth probably relate to the biomechanics of opening the mouth rather than visual targeting of prey, he said. The predominance of rolls to the right at depth, like the preference for the right eye in targeting prey at the surface, probably reflects the left-brain control of routine actions. Such lateralized behaviors are found throughout the animal kingdom, but scientists still do not fully understand the reasons for them.

"Not only is this the first report of handedness in blue whales, showing a preference for the right side as most mammals do, but we show that their side preference can change based on what the whales are doing," Friedlaender said.
-end-
Friedlaender's coauthors include James Herbert-Read at Stockholm University; Elliott Hazen at NOAA Fisheries in Monterey; Jeremy Goldbogen and David Cade at Hopkins Marine Station in Pacific Grove; John Calambokidis at Cascadia Research Collective in Olympia, Washington; Brandon Southall of Southall Environmental Associates; and Alison Stimpert at Moss Landing Marine Laboratory. Hazen and Southall are also affiliated with UC Santa Cruz. This research was funded by the Office of Naval Research.

11/15/2017

University of California - Santa Cruz

Related Whales Articles:

Blue whales change their tune before migrating
While parsing through years of recorded blue whale songs looking for seasonal patterns, researchers were surprised to observe that during feeding season in the summer, whales sing mainly at night, but as they prepare to migrate to their breeding grounds for the winter, this pattern reverses and the whales sing during the day.
Shhhh, the whales are resting
A Danish-Australian team of researchers recommend new guidelines for noise levels from whale-watching boats after having carried out experiments with humpback whales.
Fishing less could be a win for both lobstermen and endangered whales
A new study by researchers at Woods Hole Oceanographic Institution (WHOI) found that New England's historic lobster fishery may turn a higher profit by operating with less gear in the water and a shorter season.
North Atlantic right whales are in much poorer condition than Southern right whales
New research by an international team of scientists reveals that endangered North Atlantic right whales are in much poorer body condition than their counterparts in the southern hemisphere.
Solar storms could scramble whales' navigational sense
When our sun belches out a hot stream of charged particles in Earth's general direction, it doesn't just mess up communications satellites.
A better pregnancy test for whales
To determine whale pregnancy, researchers have relied on visual cues or hormone tests of blubber collected via darts, but the results were often inconclusive.
Why whales are so big, but not bigger
Whales' large bodies help them consume their prey at high efficiencies, a more than decade-long study of around 300 tagged whales now shows, but their gigantism is limited by prey availability and foraging efficiency.
Whales stop being socialites when boats are about
The noise and presence of boats can harm humpback whales' ability to communicate and socialise, in some cases reducing their communication range by a factor of four.
Endangered whales react to environmental changes
Some 'canaries' are 50 feet long, weigh 70 tons, and are nowhere near a coal mine.
Stranded whales detected from space
A new technique for analysing satellite images may help scientists detect and count stranded whales from space.
More Whales News and Whales Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.