New way to write magnetic info could pave the way for hardware neural networks

November 20, 2017

Researchers have shown how to write any magnetic pattern desired onto nanowires, which could help computers mimic how the brain processes information.

Much current computer hardware, such as hard drives, use magnetic memory devices. These rely on magnetic states - the direction microscopic magnets are pointing - to encode and read information.

Exotic magnetic states - such as a point where three south poles meet - represent complex systems. These may act in a similar way to many complex systems found in nature, such as the way our brains process information.

Computing systems that are designed to process information in similar ways to our brains are known as 'neural networks'. There are already powerful software-based neural networks - for example one recently beat the human champion at the game 'Go' - but their efficiency is limited as they run on conventional computer hardware.

Now, researchers from Imperial College London have devised a method for writing magnetic information in any pattern desired, using a very small magnetic probe called a magnetic force microscope. With this new writing method, arrays of magnetic nanowires may be able to function as hardware neural networks - potentially more powerful and efficient than software-based approaches.

The team, from the Departments of Physics and Materials at Imperial, demonstrated their system by writing patterns that have never been seen before. They published their results today in Nature Nanotechnology.

Dr Jack Gartside, first author from the Department of Physics, said: "With this new writing method, we open up research into 'training' these magnetic nanowires to solve useful problems. If successful, this will bring hardware neural networks a step closer to reality."

As well as applications in computing, the method could be used to study fundamental aspects of complex systems, by creating magnetic states that are far from optimal (such as three south poles together) and seeing how the system responds.

Imperial College London

Related Nanowires Articles from Brightsurf:

A new, highly sensitive chemical sensor uses protein nanowires
Writing in NanoResearch, a team at UMass Amherst reports that they have developed bioelectronic ammonia gas sensors that are among the most sensitive ever made.

Giving nanowires a DNA-like twist
Argonne National Laboratory played a critical role in the discovery of a DNA-like twisted crystal structure created with a germanium sulfide nanowire, also known as a 'van der Waals material.' Researchers can tailor these nanowires in many different ways -- twist periods from two to twenty micrometers, lengths up to hundreds of micrometers, and radial dimensions from several hundred nanometers to about ten micrometers.

Shell increases versatility of nanowires
Nanowires promise to make LEDs more colorful and solar cells more efficient, in addition to speeding up computers.

Scientists synthesize new nanowires to improve high-speed communication
Scientists from the Institute of Process Engineering, City University of Hong Kong and their collaborators synthesized highly crystalline ternary In0.28Ga0.72Sb nanowires to demonstrate high carrier mobility and fast IR response.

Dose of vitamin C helps gold nanowires grow
Rice University scientists discover a method to turn stubby gold nanorods into gold nanowires of impressive length.

Silver nanowires promise more comfortable smart textiles
In a paper to be published in the forthcoming issue in NANO, researchers from the Nanjing University of Posts and Telecommunications have developed a simple, scalable and low-cost capillary-driven self-assembly method to prepare flexible and stretchable conductive fibers that have applications in wearable electronics and smart fabrics.

Artificial synapses made from nanowires
Scientists from J├╝lich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell.

Nanowires could make lithium ion batteries safer
From cell phones and laptops to electric vehicles, lithium-ion batteries are the power source that fuels everyday life.

Scientists have a new way to gauge the growth of nanowires
In a new study, researchers from the US Department of Energy's Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than a human hair.

Cleaning nanowires to get out more light
A simple chemical surface treatment improves the performance of nanowire ultraviolet light-emitting diodes.

Read More: Nanowires News and Nanowires Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to