Nav: Home

Ancient barley took high road to China

November 20, 2017

First domesticated 10,000 years ago in the Fertile Crescent of the Middle East, wheat and barley took vastly different routes to China, with barley switching from a winter to both a winter and summer crop during a thousand-year detour along the southern Tibetan Plateau, suggests new research from Washington University in St. Louis.

"The eastern dispersals of wheat and barley were distinct in both space and time," said Xinyi Liu, assistant professor of archaeology in Arts & Sciences, and lead author of this study published in the journal PLOS One.

"Wheat was introduced to central China in the second or third millennium B.C., but barley did not arrive there until the first millennium B.C.," Liu said. "While previous research suggests wheat cultivation moved east along the northern edge of the Tibetan Plateau, our study calls attention to the possibility of a southern route (via India and Tibet) for barley."

Based on the radiocarbon analysis of 70 ancient barley grains recovered from archaeological sites in China, India, Kyrgyzstan and Pakistan, together with DNA and ancient textual evidence, the study tackles the mystery of why ancient Chinese farmers would change the seasonality of a barley crop that originated in a latitudinal range similar to their own.

The answer, Liu explains, is that barley changed from a winter to summer crop during its passage to China, a period in which it spent hundreds of years evolving traits that allowed it to thrive during short summer growing seasons in the highlands of Tibet and northern India.

"Barley arrives in central China later than wheat, bringing with it a degree of genetic diversity in relation to flowering time responses," Liu said. "We infer such diversity reflects preadaptation of barley varieties along that possible southern route to seasonal challenges, particularly the high altitude effect, and that led to the origins of eastern spring barley."

Liu's research on the dispersal of wheat and barley cultivation adds a new chapter to our understanding of prehistoric food globalization, a process that began about 5000 B.C. and intensified around 1500 B.C. This ongoing research traces the geographic paths and dispersal times of crops and cultivation systems that expanded across Eurasia and eventually worldwide, from points of origination in North Africa and West, East and South Asia. The eastern expansion of wheat and barley is a key story in this process.

In the hot, arid southwest Asian region where wheat and barley were first domesticated, they were grown between autumn and subsequent spring to complete their life cycles before arrival of summer droughts. These early domesticated strains included genes carried over from wild grasses that triggered flowering and grain production as days grew longer with the approach of summer.

Because of this spring-flowering life cycle, early domesticated varieties of wheat and barley were poorly suited for cultivation in northern European climates with severe winters and a different day length pattern. Previous research by the second author in this study, Diane Lister, a postdoctoral research associate at the University of Cambridge, has shown that barley and wheat adapted to European climates by evolving a mutation that switched off the genes that made flowering sensitive to increases in day length, allowing them to be sown in spring and harvested in fall.

Liu's study shows that barley evolved similar mutations on its way to China as farmers pushed its cultivation high into the mountains of the Tibetan Plateau. By the time barley reached central China, its genetic makeup had been altered so that flowering was no longer triggered by day length, allowing it to be planted in both spring and fall.

The ancient movement of wheat and barley cultivation into China offers two distinct stories about the adaption of newly introduced crops into an existing agrarian/culinary system, Liu said.

Ancient wheat that traveled to China along Silk Road routes also was genetically modified by farmers who selected strains that produced small-sized grains more suited to a Chinese cuisine that prepared them by boiling or steaming the whole grains. Larger wheat grains evolved in Europe where wheat was traditionally ground for flour.

Along the southern migration route for barley, the main story is the flowering time -- changed by farmers to gain control over the seasonal pressures of high-altitude cultivation, Liu said.

Recovery of these ancient grains has become more routine in the last decade as scholars mastered a flotation technique that allows the separation of seeds and other minute biological material from excavated dirt immersed in a bucket of water. This approach, pioneered in China by the third author of this study, Zhijun Zhao, a professor of archaeology at the Chinese Academy of Social Sciences, has transformed the understanding of ancient farming in China.

The PLOS One findings reflect the contributions of 26 co-authors, including archaeologists who recovered the grains and those who analyzed them at leading archaeobotanical laboratories in the U.S., U.K., China and India. The team also includes leading experts for barley archaeogenetics, radiocarbon analysis and agricultural history around the globe.

"We've recently realized how much prehistoric crops moved around, on a scale much greater than anyone had envisaged," said senior co-author Martin Jones, the George Pitt-Rivers Professor of Archaeological Science at Cambridge. "An intensive study of chronology, genetics and crop records now reveals how those movements laid the agrarian foundations of Bronze Age civilizations, enabling the control of seasons, and opening the way for rotation and multi-cropping."
-end-
Financial support was provided by the European Research Council (249642), National Natural Science Foundation of China (41620104007 and 41672171), National Social Science Foundation of China (11AZD116 and 14ZDB052), University of Chinese Academy of Sciences (Y65201YY00), the Department of Science and Technology, New Delhi, India (EMR/2015/ 000881), and the International Center for Energy, Environment and Sustainability (InCEES) at Washington University.

Washington University in St. Louis

Related Tibetan Plateau Articles:

Fossil trees on Peru's Central Andean Plateau tell a tale of dramatic environmental change
The anatomy of plant fossils including an enormous tree that grew 10 million years ago in the now arid, high-elevation Central Andean Plateau calls current paleoclimate models into question, suggesting that the area was more humid than models predict.
First in situ radiation measurements 21 km up into the air over Tibetan Plateau
In situ vertical radiation measurements from the surface up to the upper troposphere and lower stratosphere (UTLS), about 10~22 km in altitude, are rare over the TP or even over a large territory of China.
The spatial consistency of summer rainfall variability between the Mongolian Plateau and North China
The regional differences and similarities of precipitation variability are hotspots in climate change research.
Geologists shed light on the tibetan plateau origin puzzle: an open-and-shut perspective
Earth's geographical surfaces have been formed over millions of years.
The Kerguelen oceanic plateau sheds light on the formation of continents
How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory (CNRS/Université Toulouse III-Paul Sabatier/IRD/CNES).
Tibetan antelope thrive at high altitudes using a juvenile form of blood oxygen transport
Adult Tibetan antelope have overcome oxygen deprivation on the high-altitude Tibetan Plateau through an unusual adaptation in which they permanently express a form of hemoglobin (the iron-containing oxygen transport protein in red blood cells) that other members of the cattle family only express as juveniles or when under extreme oxygen deprivation.
Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau
A study about grazing exclusion using fences on the Tibetan Plateau by a team of researchers from China, Australia and Japan recently published in Science Bulletin, and commented in the Editors' choice column of Science.
Why the 'uplift of the Tibetan plateau' is a myth
Spicer and colleagues combine stable isotope and fossil paleoaltimetry to chart the growth of Tibet, the Himalaya and the Hengduan mountains through time and show the plateau is young, less that 15 million years old, and evolved not just by the collision of India with Eurasia but through multiple earlier mountain-building events and the infilling of deep ancient lowlands hosting subtropical monsoon-adapted biotas.
Six million-year-old bird skeleton points to arid past of Tibetan plateau
Researchers from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences have found a new species of sandgrouse in six to nine million-year-old rocks in Gansu Province in western China.
The growing Tibetan Plateau shaped the modern biodiversity
The growing Tibetan Plateau since the Cenozoic has shifted the life's history by changing the regional geography and global climate; however, little is known about the details of the process.
More Tibetan Plateau News and Tibetan Plateau Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.