Hyena population recovered slowly from a disease epidemic

November 20, 2018

Infectious diseases can substantially reduce the size of wildlife populations, thereby affecting both the dynamics of ecosystems and biodiversity. Predicting the long-term consequences of epidemics is thus essential for conservation. Researchers from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in Berlin and from the Center for Functional Ecology and Evolution (CEFE) in Montpellier, France, have now developed a mathematical model ("matrix model") to determine the impact of a major epidemic of canine distemper virus (CDV) on the population of spotted hyenas in the Serengeti National Park in Tanzania. The results of the study are published in the new Nature open-access journal Communications Biology.

In 1993/1994, a severe epidemic of canine distemper virus (CDV) swept through the Serengeti National Park in north-western Tanzania and decimated the lion population by about a third. It also hit the spotted hyena, a keystone social predator of the African Savannah. Many young hyenas showed clinical symptoms of the disease and died. CDV was probably introduced to Africa in the early 20th century. The epidemic in lions and hyenas in the early 90s was caused by a novel strain that was highly contagious for these two carnivore species.

The lion population in the park recovered relatively quickly, reaching its pre-epidemic size within a period of a few years. In contrast, the projected recovery of the hyena population required more than a decade, as the current study reveals. The main reason for its slow recovery lies probably in the relatively slow rate of reproduction of the species, the researchers say. "Spotted hyenas invest much more energy in raising their cubs than lions" says Sarah Benhaiem, a scientist at Leibniz-IZW. "Females give birth to only one or two cubs per litter and then feed them with highly nutritious milk for almost up to two years, which is exceptionally long for a carnivore". Species with low reproductive rates are likely to be particularly at risk from human-made threats such as the introduction of exotic diseases, which CDV is in Africa. "The study shows that such threats apply even to animal populations in one of Africa's largest National Parks" adds Marion L. East (Leibniz-IZW).

The mathematical model ("matrix model") included data from 625 individually known female spotted hyenas, collected as part of a long-term research project between 1990 and 2010. An extensive and diverse data base on all these females was compiled, which included information on social interactions, clinical signs of disease, molecular and immunological evidence of infection and deaths. This allowed the researchers to build a complex model with three relevant layers of information: disease data were combined with information on the social status of the female hyenas and data on their age and reproductive state. "To our knowledge, this level of sophistication was not reached by previous matrix models developed for wildlife diseases", comment Heribert Hofer (Leibniz-IZW) and Jean-Dominique Lebreton (CEFE).

The current study builds on a previous work conducted by the same team, and published in the journal Functional Ecology in March 2018. In their previous work, the authors investigated how the CDV epidemic affected the mortality of individuals, and discovered that cubs of high-ranking females had a higher chance to survive the disease than those of low-ranking females. "High-ranking females have preferential access to hunted prey, which means that they are able to nurse their cubs more often. As a result, their cubs are stronger and grow faster" says Lucile Marescot (formerly at Leibniz-IZW, now at CEFE). This likely explains why the current study found that high-ranking females are essential to the recovery of the population.

The new model made it possible to determine for the first time the "basic reproduction number" (R0) of the disease in spotted hyenas. "This is a useful measure in epidemiology because it tells us if and how quickly an infectious disease will spread in a population" explains Olivier Gimenez (CEFE). During the epidemic, this number was almost six, indicating that an infected hyena could transmit the virus to six other healthy hyenas. "This is a fairly high value, similar to that of measles in humans, which also explains why the epidemic spread so rapidly in the 1990s," says Stephanie Kramer-Schadt (Leibniz-IZW). What is true for measles in humans also applies to CDV in hyenas: if young survive the infection they develop antibodies and gain immunity for the rest of their life. The study highlights the importance of age and social status in the spread of a childhood illness.
-end-
Publication

Benhaiem S, Marescot L, East ML, Kramer-Schadt S, Gimenez O, Lebreton JD, Hofer H (2018): Slow recovery from a disease epidemic in the spotted hyena, a keystone social carnivore. Communications Biology.

Previous study:

Marescot L, Benhaiem S, Gimenez O, Hofer H, Lebreton JD, Olarte-Castillo X, Kramer-Schadt S, East ML (2018): Social status mediates the fitness costs of infection with canine distemper virus in Serengeti spotted hyenas. Functional Ecology 32, 1237-1250 (2018).

Contact

Sarah Benhaiem
Department for Ecological Dynamics
Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in the Forschungsverbund Berlin e.V.
Alfred-Kowalke-Straße 17
10315 Berlin
Phone: +49-0-30-5168 466
E-Mail: benhaiem@izw-berlin.de

Lucile Marescot
Campus du CNRS
1919, route de Mende
34293 Montpellier 5
Phone: +33-04-67-61-33-20
E-Mail: lucile.marescot@cefe.cnrs.fr

Steven Seet
Science Communication
Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) in the Forschungsverbund Berlin e.V.
Alfred-Kowalke-Straße 17
10315 Berlin
Phone: +49-0-30-5168-121
E-Mail: seet@izw-berlin.de

Forschungsverbund Berlin

Related Infectious Diseases Articles from Brightsurf:

Understanding the spread of infectious diseases
Physicists at M√ľnster University (Germany) have shown in model simulations that the COVID-19 infection rates decrease significantly through social distancing.

Forecasting elections with a model of infectious diseases
Election forecasting is an innately challenging endeavor, with results that can be difficult to interpret and may leave many questions unanswered after close races unfold.

COVID-19 a reminder of the challenge of emerging infectious diseases
The emergence and rapid increase in cases of coronavirus disease 2019 (COVID-19), a respiratory illness caused by a novel coronavirus, pose complex challenges to the global public health, research and medical communities, write federal scientists from NIH's National Institute of Allergy and Infectious Diseases (NIAID) and from the Centers for Disease Control and Prevention (CDC).

Certain antidepressants could provide treatment for multiple infectious diseases
Some antidepressants could potentially be used to treat a wide range of diseases caused by bacteria living within cells, according to work by researchers in the Virginia Commonwealth University School of Medicine and collaborators at other institutions.

Opioid epidemic is increasing rates of some infectious diseases
The US faces a public health crisis as the opioid epidemic fuels growing rates of certain infectious diseases, including HIV/AIDS, hepatitis, heart infections, and skin and soft tissue infections.

Infectious diseases could be diagnosed with smartphones in sub-Saharan Africa
A new Imperial-led review has outlined how health workers could use existing phones to predict and curb the spread of infectious diseases.

The Lancet Infectious Diseases: Experts warn of a surge in vector-borne diseases as humanitarian crisis in Venezuela worsens
The ongoing humanitarian crisis in Venezuela is accelerating the re-emergence of vector-borne diseases such as malaria, Chagas disease, dengue, and Zika virus, and threatens to jeopardize public health gains in the country over the past two decades, warn leading public health experts.

Glow-in-the-dark paper as a rapid test for infectious diseases
Researchers from Eindhoven University of Technology (The Netherlands) and Keio University (Japan) present a practicable and reliable way to test for infectious diseases.

Math shows how human behavior spreads infectious diseases
Mathematics can help public health workers better understand and influence human behaviors that lead to the spread of infectious disease, according to a study from the University of Waterloo.

Many Americans say infectious and emerging diseases in other countries will threaten the US
An overwhelming majority of Americans (95%) think infectious and emerging diseases facing other countries will pose a 'major' or 'minor' threat to the U.S. in the next few years, but more than half (61%) say they are confident the federal government can prevent a major infectious disease outbreak in the US, according to a new national public opinion survey commissioned by Research!America and the American Society for Microbiology.

Read More: Infectious Diseases News and Infectious Diseases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.