Mapping dietary data to better understand the relationship between diet and disease

November 20, 2018

Dublin, Tuesday, November 20th, 2018 - Researchers at Trinity College Dublin have developed a new data mapping method which improves the quality of dietary data collected by short frequency questionnaires (SFQs), thereby improving the capacity to identify diet-disease relationships.

The relationship between diet and disease can be difficult to accurately identify because of limited dietary assessment tools. Even relatively simple descriptive analysis of "unhealthy" food intake data can be compromised and bias our understanding of the potential association with chronic disease.

Now researchers at Trinity have described a data-mapping method which will link matched datasets from two studies to improve the quality of dietary data collected. The research findings have just been published in the international, peer-reviewed Frontiers in Nutrition journal.

Describing the benefits of the research, co-Author Michael Crowe said: "Using this approach to successfully map datasets from different surveys should help improve the quality of the data that can be estimated using SFQs therefore improving the potential to identify diet-disease relationships. This new research will interest those professionals involved in understanding dietary intake, including nutrition scientists, dieticians and health care professionals."

This study was part of a larger research project in Dublin Dental University Hospital, Trinity College, which aimed to determine associations between dental problems in children and risk factors such as dietary intake, body weight, general health and psychosocial factors. In this paper, the team describe a method that can be used to link matched datasets from two studies to improve the quality of dietary data collected using SFQs in large cohort surveys. Growing Up in Ireland (GUI) is a nationally representative longitudinal study of infants in the Republic of Ireland which used a SFQ (with no portion sizes) to assess the intake of "healthy" and "unhealthy" food and drink by 3 year old preschool children.

The National Preschool Nutrition Survey (NPNS) provides the most accurate estimates available for dietary intake of young children in Ireland using a detailed 4 days weighed food diary. A data mapping algorithm was developed and applied to fill all GUI food groups with information from the NPNS food datafile. The augmented data were analysed to examine all food groups described in NPNS and GUI and what proportion of foods were covered, non-covered, or partially-covered by GUI food groups, as a percentage of the total number of consumptions. The term 'non-covered' indicated a specific food consumption that could not be mapped using a GUI food group.

"High sugar" food items that were non-covered included ready-to-eat breakfast cereals, fruit juice, sugars, syrups, preserves and sweeteners, and ice-cream. The average proportion of consumption frequency and amount of foods not covered by GUI was 44 and 34%, respectively. The difficulties associated with measuring diet are well documented. The researchers have explored the augmentation of a limited SFQ in the GUI study by unidirectional mapping from a more detailed 4-day food diary in the NPNS study. The results have highlighted the deficiencies in using SFQs for investigating associations with health outcomes. The SFQ did not capture a substantial portion of habitual foods consumed by 3-year olds in Ireland.

Researchers interested in focussing on specific foods, could use this approach to assess the proportion of foods covered, non-covered, or partially-covered by reference to the mapped food database. These results can be used to improve SFQs for future studies and improve the capacity to identify diet-disease relationships.
-end-
Media Contact

Ciara O'Shea, Media Officer, Trinity College Dublin, at COSHEA9@tcd.ie / +353-1-896-4337

Dr Michael Crowe, Dublin Dental University Hospital (Department of Periodontology and Restorative Dentistry), at michael.crowe@dental.tcd.ie / +353-1-490-9153

Editor's Notes

'Data mapping from food diaries to augment the amount and frequency of foods measured using short food questionnaires' has been published in Frontiers in Nutrition: https://www.frontiersin.org/articles/10.3389/fnut.2018.00082/full

Trinity College Dublin

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.