Nav: Home

Fish genes hold key to repairing damaged hearts

November 20, 2018

The Mexican tetra fish can repair its heart after damage -- something researchers have been striving to achieve in humans for years.

Now, new research funded by the British Heart Foundation (BHF) published in Cell Reports suggests that a gene called lrrc10 may hold the key to this fish's remarkable ability.

Around 1.5 million years ago, the tetra fish (Astyanax Mexicanus) living in the rivers of Northern Mexico were periodically washed into caves by seasonal floodwaters. Over time, the floods became less frequent and eventually stopped. This created the perfect environment for different members of the same species to adapt and evolve to suit their different habitats--the river and the caves.

To this day, the surface fish still living in the rivers of Mexico have retained their ability to repair their heart tissue. However, the fish in one particular cave, called Pachón, lost this amazing ability. They also lost their colour and ability to see, with neither trait giving them any advantage in the perpetual darkness of their new home.

Dr Mathilda Mommersteeg and her team at the University of Oxford compared the genetic code of the river fish to that of the blind cave fish to discover what special mechanisms are required for heart repair. They found three areas of the fish genome were implicated in the fish's ability to repair their hearts.

The researchers also compared the activity of genes in the river versus the cave fish in the period after heart injury. Two genes, lrrc10 and caveolin were much more active in the river fish and could be key in allowing the river fish to repair their hearts.

Lrrc10 is already linked to a heart condition called dilated cardiomyopathy (DCM) in people. Studies in mice have previously shown that this gene is involved in the way that heart cells contract with every heartbeat.

The researchers went on to study the effect of this gene in the zebrafish, another fish which has the remarkable ability to heal its own heart. When the team inactivated the lrrc10 gene in zebrafish they saw that the fish could no-longer fully repair their hearts.

Hundreds of thousands of people in the UK are living with debilitating heart failure, often as a result of a heart attack. During a heart attack, the heart is deprived of oxygen leading to the death of heart muscle cells and their replacement by scar tissue. This stops the heart muscle from contracting properly and reduces the heart's ability to pump blood around the body.

People suffering from heart failure can't regenerate their damaged hearts, and often the only cure is a heart transplant. Researchers hope that by unlocking the secrets of these remarkable fish, we will one day be able to heal human hearts in much the same way.

Professor Metin Avkiran, Associate Medical Director at the British Heart Foundation, said:

"These remarkable findings show how much there is still to learn from the rich tapestry of the natural world. It's particularly interesting that the ability of the river fish to regenerate its heart may arise from an ability to suppress scar formation. We now need to determine if we can exploit similar mechanisms to repair damaged human hearts.

"Survival rates for heart failure have barely changed over the last 20 years, and life expectancy is worse than for many cancers. Breakthroughs are desperately needed to ease the devastation caused by this dreadful condition."

Dr Mathilda Mommersteeg, Associate Professor of Developmental and Regenerative Medicine at the University of Oxford, who led the research, said:

"A real challenge until now was comparing heart damage and repair in fish with what we see in humans. But by looking at river fish and cave fish side by side, we've been able to pick apart the genes responsible for heart regeneration.

"Heart failure is a cruel and debilitating illness that more than half a million people across the UK are living with. It's early days but we're incredibly excited about these remarkable fish and the potential to change the lives of people with damaged hearts."
-end-
To request interviews or for more information please call the BHF press office on 020 7554 0164 (07764 290 381 - out of hours) or email newsdesk@bhf.org.uk.

British Heart Foundation

For over 50 years we've pioneered research that's transformed the lives of people living with heart and circulatory conditions. Our work has been central to the discoveries of vital treatments that are changing the fight against heart disease. But so many people still need our help. From babies born with life-threatening heart problems to the many Mums, Dads and Grandparents who survive a stroke or heart attack. Every pound raised, minute of your time and donation to our shops will help make a difference to people's lives. Find out more at bhf.org.uk

British Heart Foundation

Related Heart Failure Articles:

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.
Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.
How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.
Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.
NSAID impairs immune response in heart failure, worsens heart and kidney damage
Non-steroidal anti-inflammatory drugs, or NSAIDs, are widely known as pain-killers and can relieve pain and inflammation.
Heart cell defect identified as possible cause of heart failure in pregnancy
A new Tel Aviv University study reveals that one of the possible primary causes of heart failure in pregnant women is a functional heart cell defect.
In heart failure, a stronger heart could spell worse symptoms
Patients with stronger-pumping hearts have as many physical and cognitive impairments as those with weaker hearts, suggesting the need for better treatment.
Patients with common heart failure more likely to have lethal heart rhythms
New Smidt Heart Institute Research shows that patients with Heart Failure with Preserved Ejection Fraction (HFpEF) are more likely to have lethal heart rhythms.
Why does diabetes cause heart failure?
A Loyola University Chicago Stritch School of Medicine study reveals how, on a cellular level, diabetes can cause heart failure.
Oxygen therapy for patients suffering from a heart attack does not prevent heart failure
Oxygen therapy does not prevent the development of heart failure.
More Heart Failure News and Heart Failure Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.