Nav: Home

Gut protein mutations shield against spikes in glucose

November 20, 2018

Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk? A new study by investigators at Brigham and Women's Hospital has uncovered mutations in a gene that appear to help drive this difference. Individuals with a specific variant in a gene known as SGLT1, which results in reduced uptake of sugars in the gut, had lower incidence of obesity, diabetes, death and heart failure, suggesting that SGLT1 may make a promising therapeutic target for metabolic disease. The team's results were recently published in the Journal of the American College of Cardiology.

"These SGLT1 mutations have not been characterized in the general population before," said first author Sara Seidelmann, MD, PhD, who performed this work as a clinical and research fellow in the Division of Cardiovascular Medicine at the Brigham working with senior author Scott Solomon, MD, professor of Medicine and The Edward D. Frohlich distinguished chair at the Brigham. "We were able to evaluate the association of genetic mutations in SGLT1 with the rise in blood sugar that occurs in response to dietary glucose in several large populations."

Carbohydrates that enter the body are broken down in the small intestine into smaller pieces, such as glucose, and absorbed into bodily tissues. The sodium/glucose co-transporter-1 (SGLT1) protein plays a critical role in glucose transport into these tissues. Another SGLT family member - SGLT2 - is the target of a class of diabetes drugs known as SGLT2 inhibitors. Researchers believe that while SGLT2 inhibitors stop glucose re-uptake in the kidneys, inhibiting SGLT1 could reduce glucose uptake at the source - the small intestine - which might reduce the carbohydrate load after a large meal.

Some SGLT1 mutations make the protein dysfunctional, which can cause nutrient malabsorption and even death in newborns, yet other mutations, such as the ones that the BWH researchers found, only slightly alter the protein's function and do not have such devastating outcomes. To examine the effects of the latter kind of mutations, the research team used whole-exome sequencing to identify the unique genetic code of 5,687 participants in the ARIC (Atherosclerosis Risk in Communities) study, an on-going longitudinal analysis o¬¬f participants from four U.S. states. In addition to genetic analysis, these participants had also undergone an oral glucose tolerance test, in which they were provided with a sugary drink and then had their blood glucose levels tested two hours later. The results from the glucose test were then related to genetic variations in SGLT1.

An external validation analysis was performed to study the effect of SGLT1 variants on levels of sugar in the blood after the oral glucose challenge in a large European-Finnish population sample and a replication analysis was performed in African-American participants allowing for heterogenous representation. The researchers also performed a Mendelian randomization analysis to explore the long-term effects of lowering sugar absorption via these mutations on metabolic and cardiovascular disease. This type of analysis enables researchers to estimate the effect of a given variable - post-meal glucose in this case - without conducting an additional study.

Researchers found that 16 percent of European-American participants and 7.5 percent of African-American participants carried an SGLT1 mutation. Those with a mutation were protected from spikes in blood glucose levels after the ingestion of sugars, despite ingesting an equivalent number of calories as others. The Mendelian randomization analysis also showed that these people had a lower risk for obesity and less instances of diabetes mellitus, death and heart failure later in life.

"In addition to confirming the important role of SGLT1 in the digestion of dietary sugars, this work presents new potential opportunities for therapies," said Solomon "The SGLT-1 receptor could be a potential therapeutic target for cardiometabolic disease and suggest that development of drugs that selectively inhibit SGLT-1 could be of benefit in certain high-risk individuals." Nevertheless, Solomon and Seidelmann caution that developing such drugs takes many years and that clinical trials would be needed to determine their safety and efficacy.
-end-
Funding for this work was provided by the National Institutes of Health (NIH) (2T32HL094301-06, R01HL131532 and R01HL134168), NIH/National Institute of Diabetes and Digestive and Kidney Diseases (K24DK106414 and R01DK089174), National Heart, Lung, and Blood Institute (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN26820110000 9C, HHSN268201100010C, HHSN268201100011C, and HHSN26820 1100012C), the EU FP7 (313010 [BBMRI-LPC], nr. 305280, and HZ2020 633589 [Ageing with Elegans]), The Finnish Academy (269517), Finnish Foundation for Cardiovascular Research, the Yrjö Jahnsson Foundation and the Päivikki and Sakari Sohlberg Foundation. Co-authors of this study have received research grants or consulted with pharmaceutical companies - for a full list of disclosures, please see the paper in JACC.

Paper cited: Seidelmann, S et al. "Genetic Variants in SGLT1, Glucose Tolerance, and Cardiometabolic Risk" Journal of the American College of Cardiologyhttps://doi.org/10.1016/j.jacc.2018.07.061

Brigham and Women's Hospital

Related Diabetes Articles:

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.
Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.
Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).
Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.
Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.
Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.
Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).
Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.
People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.
Diabetes, but not diabetes drug, linked to poor pregnancy outcomes
New research indicates that pregnant women with pre-gestational diabetes who take metformin are at a higher risk for adverse pregnancy outcomes -- such as major birth defects and pregnancy loss -- than the general population, but their increased risk is not due to metformin but diabetes.
More Diabetes News and Diabetes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.