Cutting the legs off cancer

November 20, 2018

Melanoma skin cancer tumors grow larger and are more likely to metastasize due to interactions between a pair of molecules, according to experiments in mice and human cells. The results may restore the potential for a type of cancer therapy previously abandoned in clinical trials. The results also implicate one molecule already connected to obesity and dementia as a potential cause of metastasis, or spread of cancer cells to other areas of the body.

Melanoma accounts for about 1 percent of skin cancers, but causes a large majority of skin cancer deaths, according to the American Cancer Society. Few treatments exist to prevent melanoma from metastasizing.

A research team led by Associate Professor Beate Heissig at the University of Tokyo Institute of Medical Science has studied tissue type plasminogen activator (tPA) for over a decade. tPA is a protease, a small molecule that can cut proteins. tPA bonds to a larger protein that sits within the membrane barrier of animal cells, called low-density lipoprotein receptor-related protein 1 (LRP1).

Heissig's research team proposes blocking the metastasis-promoting action of tPA by preventing it from connecting to LRP1. Mice without LRP1 had smaller tumors, even when researchers provided extra tPA.

Other studies have linked LRP1 to chronic diseases including diabetes, obesity, and Alzheimer's disease.

"It's surprising that LRP1 is also regulating cancer growth and spread. It's normally a receptor for fat molecules," said Heissig.

Controlling cancer's spread

In 2016, Heissig's research group discovered that mice given extra tPA had greater numbers of a specific type of cell. This same cell type usually increases within the melanoma tumors and can enhance tumor growth. Based on that potential connection, the current project was designed to investigate what role tPA might play in skin cancer.

When cancer cells metastasize, they use proteases to cut through the matrix of protein chains that holds healthy cells in place. When cancer cells arrive in a new part of the body and begin to form new tumors, they corrupt nearby cells to build a niche, or supportive home for themselves.

Clinical researchers have attempted to prevent metastasis by stopping proteases. However, completely blocking all proteases causes unintended side effects. No protease-based cancer therapy has succeeded in clinical trials.

"Our vision is a cancer therapy that specifically prevents the interaction of LRP1 and tPA so that only the metastasis effect of the protease is stopped. Better understanding of the specific interactions of LRP1 and tPA will hopefully lead to protease cancer treatments that maintain the normal, healthy protease actions of tPA," said Yousef Salama, first author of the research paper and postdoctoral researcher in Heissig's lab.

Salama also suggests that tPA may be linked to cancer immunotherapy, the life-saving treatment awarded the 2018 Nobel Prize in Physiology or Medicine.

"The scientific community knows that tPA can interfere with the cell signals being studied for cancer immunotherapy. Blocking tPA could enhance the immune system's action and potentially boost the effectiveness of cancer immunotherapy treatments," said Salama.
-end-
About the Research

Collaborators at the Juntendo University School of Medicine also contributed to the research.

This research is an experimental study using live mice as well as mouse and human cells published in Federation of American Societies for Experimental Biology Journal.

Background Information

For more information about melanoma skin cancer, please visit the American Cancer Society website: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html

Previous research on tPA and mesenchymal stromal cells was published by Heissig and colleagues in August 2016 in the journal Blood. Please see the citation information below.

Douaa Dhahri, Kaori Sato-Kusubata, Makiko Ohki-Koizumi, Chiemi Nishida, Yoshihiko Tashiro, Shinya Munakata, Hiroshi Shimazu, Yousef Salama, Salita Eiamboonsert, Hiromitsu Nakauchi, Koichi Hattori and Beate Heissig. Fibrinolytic crosstalk with endothelial cells expands murine mesenchymal stromal cells. Blood 25 August 2016 128:1063-1075. DOI: 10.1182/blood-2015-10-673103.

Journal Article

Salama Y, Lin SY, Dhahri D, Hattori K, Heissig B. The fibrinolytic factor tPA drives LRP1-mediated melanoma growth and metastasis. 20 November 2018. FASEB Journal. DOI: 10.1096/fj.201801339RRR

Related Links

Institute of Medical Science: http://www.ims.u-tokyo.ac.jp/imsut/en/

Center for Stem Cell Biology and Regenerative Medicine: http://stemcell-u-tokyo.org/en/

Heissig lab website: http://stemcell-u-tokyo.org/en/scd/

Research Contact

Beate Heissig, M.D., Ph.D.
Center for Stem Cell Biology and Regenerative Medicine, Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo
4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, JAPAN
Phone: +81-3-6409-2108
E-mail: heissig@ims.u-tokyo.ac.jp

Press Contact

Ms. Caitlin Devor
Division for Strategic Public Relations, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN
Tel: +81-3-5841-0876
Email: press-releases.adm@mail.u-tokyo.ac.jp

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Obesity Articles from Brightsurf:

11 years of data add to the evidence for using testosterone therapy to treat obesity, including as an alternative to obesity surgery
New research covering 11 years of data presented at this year's European and International Congress on Obesity (ECOICO 2020) show that, in obese men suffering from hypogonadism (low testosterone), treatment with testosterone injections lowers their weight and improves a wide range of other metabolic parameters.

Overlap between immunology of COVID-19 and obesity could explain the increased risk of death in people living with obesity, and also older patients
Data presented in a special COVID-19 session at the European and International Congress on Obesity (ECOICO 2020) suggests that there are overlaps between the immunological disturbances found in both COVID-19 disease and patients with obesity, which could explain the increased disease severity and mortality risk faced by obese patients, and also elderly patients, who are infected by the SARS-CoV-2 virus that causes COVID-19 disease.

New obesity guideline: Address root causes as foundation of obesity management
besity management should focus on outcomes that patients consider to be important, not weight loss alone, and include a holistic approach that addresses the root causes of obesity, according to a new clinical practice guideline published in CMAJ (Canadian Medical Association Journal) http://www.cmaj.ca/lookup/doi/10.1503/cmaj.191707.

Changing the debate around obesity
The UK's National Health Service (NHS) needs to do more to address the ingrained stigma and discrimination faced by people with obesity, says a leading health psychologist.

Study links longer exposure to obesity and earlier development of obesity to increased risk of type 2 diabetes
Cumulative exposure to obesity could be at least as important as actually being obese in terms of risk of developing type 2 diabetes (T2D), concludes new research published in Diabetologia (the journal of the European Association for the Study of Diabetes [EASD]).

How much do obesity and addictions overlap?
A large analysis of personality studies has found that people with obesity behave somewhat like people with addictions to alcohol or drugs.

Should obesity be recognized as a disease?
With obesity now affecting almost a third (29%) of the population in England, and expected to rise to 35% by 2030, should we now recognize it as a disease?

Is obesity associated with risk of pediatric MS?
A single-center study of 453 children in Germany with multiple sclerosis (MS) investigated the association of obesity with pediatric MS risk and with the response of first-line therapy in children with MS.

Women with obesity prior to conception are more likely to have children with obesity
A systematic review and meta-analysis identified significantly increased odds of child obesity when mothers have obesity before conception, according to a study published June 11, 2019 in the open-access journal PLOS Medicine by Nicola Heslehurst of Newcastle University in the UK, and colleagues.

Obesity medicine association announces major updates to its adult obesity algorithm
The Obesity Medicine Association (OMA) announced the immediate availability of the 2019 OMA Adult Obesity Algorithm, with new information for clinicians including the relationship between Obesity and Cardiovascular Disease, Diabetes Mellitus, Dyslipidemia, and Cancer; information on investigational Anti-Obesity Pharmacotherapy; treatments for Lipodystrophy; and Pharmacokinetics and Obesity.

Read More: Obesity News and Obesity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.