Nav: Home

A protein that makes skin cancer cells more invasive

November 20, 2018

Loss of a protein called TRIM29 promotes cancer cell invasion in a common type of skin cancer, suggesting a novel diagnostic marker and a possible therapeutic target.

Squamous cell carcinoma is a common type of skin cancer, usually affecting skin that is exposed to the damaging ultraviolet rays of the sun. A protein that normally helps repair DNA, called TRIM29, is also involved in cancers of the breast, pancreas, prostate, lungs, bladder and stomach. Its role in squamous cell carcinoma, however, was unknown until now.

A research team led by dermatologist Teruki Yanagi and Professor Shigetsugu Hatakeyama at Hokkaido University found that human squamous carcinoma cells with lower levels of TRIM29 were more mobile and invasive, and thus correlated with a worse prognosis. This study was published in Cancer Research.

TRIM29 expression was highest in normal skin cells. It was lower in squamous cell carcinomas, and even lower in tumors that metastasized, migrating from the main cancer site to other parts of the body, such as the lungs. The researchers also determined that turning off the gene made the cancer cells more mobile and invasive, both in cell cultures and mice.

Interestingly, they found that TRIM29 interacts with another protein inside cells called keratin, which plays numerous roles in forming a protective structural framework within cells and also in cell motility and signalling.

When TRIM29 levels are normal in a cell, it makes sure keratin is widely distributed within the cytoplasm. On the other hand, when TRIM29 levels are low, keratin distributes mainly around the cell nucleus, resulting in altered cell shapes.

Previous studies had shown that TRIM29 suppressed breast and prostate cancer development, because the protein is spread throughout the cytoplasm in these types of cells. But it promoted development of pancreatic, lung, bladder and stomach cancers, where it is localized in the nucleus. In skin cells, TRIM29 is normally positioned throughout the cytoplasm, reinforcing its protective role in suppressing skin cancer.

"Our findings suggest that TRIM29 could be a novel diagnostic and prognostic marker in squamous cell cancers common in skin, neck and head. The TRIM-29/keratin interaction could also be a therapeutic target for treating advanced and metastatic squamous cell cancers," says Teruki Yanagi.
-end-


Hokkaido University

Related Cancer Cells Articles:

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
Plant-derived SVC112 hits cancer stem cells, leaves healthy cells alone
Study shows Colorado drug SVC112 stops production of proteins that cancer stem cells need to survive and grow.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.