Researchers identify new gene mutation in familial thyroid cancers

November 20, 2019

HERSHEY, Pa. - Researchers from Penn State College of Medicine identified a new gene mutation that may cause a type of familial thyroid cancer. Dr. Darrin Bann, an otolaryngology resident at the College of Medicine and lead author of the study, said that this mutation is the first and only mutation associated with familial thyroid cancer to be identified in a gene that is primarily expressed in the thyroid gland.

According to the researchers, people who have a first degree relative with thyroid cancer have a two to five-fold increase of developing the disease themselves. Identifying this mutation has helped the researchers understand why this form of cancer is more inheritable than other cancers. They published the study results in Cancer Research.

"Thyroid cancer is common and on the rise, and hereditary non-medullary thyroid cancers account for six to ten percent of cases," said Bann. "Prior to this study, there was not much data to explain why this type of cancer was highly heritable."

The researchers identified a family consisting of eight thyroid cancer patients across four generations. They used next generation sequencing, which can provide a full 'picture' of a person's genetic makeup in less than a day, to examine every gene in the genome for all of the thyroid cancer patients in the family. When analyzing the data, they discovered all the family members with thyroid cancer had a mutation in a gene called DUOX2 - a rare mutation that occurs once in every 138,000 members of the general population.

The DUOX2 gene provides information for the creation of a protein called dual oxidase 2, which produces hydrogen peroxide and is found at high levels in the thyroid gland. After performing a series of biochemical analyses on the protein with the mutation, they were able to determine that the mutated version produced more hydrogen peroxide, rather than stopping the production of the chemical.

Hydrogen peroxide is used in the final stages of thyroid hormone production, but the researchers believe the excess may cause additional gene mutations - which may increase the risk of thyroid cancer.

"Hydrogen peroxide can harm genetic material through a process called oxidative damage," Bann said. "This may be a common theme underlying genetic risk for developing thyroid cancer. If we can identify more mutations that increase risk for oxidative damage, we may be able to develop preventative strategies - including treatments with antioxidants."

Based on their findings, the researchers decided to see if DUOX2 was related to other genetic mutations associated with non-medullary thyroid cancers. They found that some individuals with sporadic thyroid cancers had a mutation that increased the amount of DUOX2 in the thyroid gland. These findings suggest to the researchers that dysregulation of hydrogen peroxide may be the cause of other genetic mutations associated with thyroid cancers.

In the future, Bann hopes knowledge of this mutation can help create new models for studying thyroid cancer in the lab and the development of prevention strategies. While previous mutations have been identified in families with thyroid cancer, Bann says the DUOX2 mutation is the only one that connects directly to thyroid tissue.

"The individuals with thyroid cancer in the family we studied had a mutation in a gene that is related to thyroid tissue," Bann said. "Finding other families and individuals with this mutation will be essential for confirming our findings."
Bann, an alumnus of Penn State College of Medicine's MD/PhD Medical Scientist Training Program, worked on the project with senior investigators Dr. David Goldenberg, chair of the Department of Otolaryngology - Head and Neck Surgery at Penn State Health Milton S. Hershey Medical Center and the College of Medicine, and James Broach, chair of the Department of Biochemistry and Molecular Biology and director of the Institute for Personalized Medicine at the College of Medicine.

Other investigators from Penn State College of Medicine include Kathryn Sheldon, Kenneth Houser, Lan Nguyen, Joshua Warrick and Maria Baker. Qunyan Jin and Glenn Gerhard of the Lewis Katz School of Medicine at Temple University also contributed to the study.

This work was supported, in part, by a grant with the Pennsylvania Department of Health using Tobacco CURE funds to Dr. David Goldenberg.

Penn State

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to