Researchers identify a molecular mechanism involved in Huntington's disease

November 20, 2019

Researchers from the Institute of Neurosciences of the University of Barcelona (UBNeuro) and the August Pi i Sunyer Biomedical Research Institute (IDIBAPS) described a mechanism, the increase of proteinaceous synthesis, which takes part in the degeneration of the type of neurons that are affected in Huntington's disease, a genetic neurodegenerative disease. These results, published in the science Brain, could help researchers design new therapies to treat this and other brain-affecting diseases.

The study is led by Esther Pérez-Navarro, lecturer at the Faculty of Medicine and Health Sciences of the UB and researcher at the August Pi i Sunyer Biomedical Research Institute (IDIBAPS). Other researchers from the University Pablo de Olavide have taken part in the study too.

Huntington's disease is a genetic neurodegenerative disease caused by the mutation of the huntingtin gene, which causes the early loss of striatal projection neurons, with effects in the motor coordination and cognitive and psychiatric damage. The new study analysed the role in this proteinaceous synthesis altering process, a mechanism that allows neurons read the genetic code to synthetize proteins.

Improvement of motor coordination in mice

In order to study this mechanism, researchers analysed the total and phosphorylate levels of 4E-BP1, a protein that inhibits proteinaceous synthesis, in mice models with the disease. "The results show the total levels of the protein are reduced, while the phosphorylate levels increase, in striatal projection neurons in mice with the disease, compared to control mice, so the protein synthesis increases, as seen in samples from patients' brains", notes Esther Pérez-Navarro, also researcher at the Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED).

To confirm this relation between inappropriate activity of proteinaceous synthesis and the disease, researchers blocked this mechanism pharmacologically and observed the motor function improved in mice and that different molecular values were recovered in normal levels in the brains. "These results show an increase in the proteinaceous synthesis in the Huntington's disease is damaging and therefore, it represents a potential therapeutic target for new treatments such as a drug that can be administrated in a non-invasive manner to normalize proteinaceous synthesis", noted the researcher.

A common mechanism in other brain diseases

Although this is the first time the proteinaceous synthesis alteration is related to this disease, this is a mechanism that was described in other neurodegenerative diseases (such as Alzheimer's and Parkinson's) and other mental disorders such as autism. "Finding common mechanisms in different diseases affecting the brain makes it more attractive, since the same therapy could benefit different diseases", says the researcher.

Biomarker search

This research study opens the door to identifying biomarkers that can help detect the disease before the first symptoms appear. In this sense, the researchers, in collaboration with the Unit of Movement Disorders in Hospital de la Santa Creu i Sant Pau, are studying whether the proteinaceous synthesis is also altered in outside brain cells, such as blood cells and fibroblasts (skin cells). "The advantage of this study being conducted in Huntington's, associated with a genetic mutation, is that we can analyse these changes in carriers who do not show symptoms and we can make a long-term monitoring", concludes the researcher.

University of Barcelona

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to