Could sphingolipids help solve a racial paradox in heart disease?

November 20, 2019

When it comes to cholesterol, we've come to accept a simple narrative. Our risk of heart disease is lower when we have more "good cholesterol," or high-density lipoproteins (HDL), and less "bad cholesterol," or low-density lipoproteins (LDL) and triglycerides.

Complicating this narrative, however, is the higher risk of severe heart disease in African Americans, despite the fact that they tend to have higher levels of HDL and lower levels of triglycerides.

Researchers at the Medical University of South Carolina (MUSC) explored why it is that African Americans with the autoimmune disease lupus experience severe heart disease while having a lipid profile that would be considered protective in white Americans.

They found that there is more to the lipid story than just HDL, LDL and triglycerides.

The MUSC investigators report in PLOS ONE that another class of lipids, known as sphingolipids, are associated with heart disease in African Americans with lupus.

In autoimmune diseases such as lupus, the body is attacked by its own immune system, which is supposed to defend it against invaders. About 90% of people with lupus are female, and African Americans are three times more likely to have lupus than white Americans. Lupus is a chronic disease that can affect many organs, especially the heart and kidneys. People with lupus are 10 times more likely to have heart disease, which is a leading cause of death for them.

"We know that the African American community has higher HDL, which is a good thing, and lower triglycerides, which is a good thing, but nonetheless, they have more heart disease than the white population," said Samar M. Hammad, Ph.D., associate professor in the Department of Regenerative Medicine and Cell Biology at MUSC and first author of the PLOS ONE article.

"So it is about time to start looking at other molecules and other markers that can explain, at least in part, why African Americans develop more cardiovascular disease," she added. "And that's particularly true in autoimmune diseases such as lupus and Type 1 diabetes."

Hammad thinks that sphingolipid profiles could one day serve as such markers for heart disease in this population.

The MUSC study that she led in collaboration with Jim C. Oates, M.D., director of the Division of Rheumatology and Immunology at MUSC, was the first to look at how race affects sphingolipid levels in patients with lupus and patients with lupus and heart disease.

For the study, Hammad used plasma samples from patients with lupus stored by the MUSC Clinical and Community Resource Core, a part of MUSC's Core Center for Clinical Research (CCCR). The CCCR has collected samples and clinical data over time about hundreds of patients with lupus treated at MUSC, many of them African American.

Hammad and her team analyzed plasma samples from 73 patients with lupus or lupus and cardiovascular disease. She also collected samples from 34 healthy African American and white participants who acted as controls.

Hammad's study found that all patients with lupus, regardless of race, had more sphingolipids than healthy study participants, though the increases were more marked in the African American patients.

Hammad also noted a stark difference in sphingolipid levels between the African American and white patients with lupus who developed heart disease. The levels of sphingoid bases, the backbone on which sphingolipids are created, increased in the African American patients but decreased in the white patients. No other changes in sphingolipids were seen in the white patients, but the African American patients had increases in a number of other sphingolipids as well.

Sphingosine 1-phospahte (S1P) has been shown in previous studies to cause inflammation that can lead to heart disease. In this study, the ratios between certain species of ceramides and S1P were found to be lower in all lupus patients than in healthy participants. These ratios correlated positively with disease activity in African American but not white patients with lupus, as measured by their scores on the Systemic Lupus Erythematosus Disease Activity Index.

"It is interesting that the markers for heart disease in the white patients with lupus are different from those for African Americans," said Hammad.

These differences, according to Hammad, do not, as of yet, add up to a biomarker that physicians could test to see whether someone with early lupus would eventually develop heart disease.

In fact, she doubts that a single biomarker will ever do that job.

However, she thinks that broader information on the types and number of sphingolipids present in a patient's plasma - his or her sphingolipid profile - could one day help physicians to predict disease severity or assess the efficacy of an anti-lupus drug. She also thinks that the ceramide-S1P ratio will likely make up one part of that profile, in much the same way as HDL-LDL ratios are included in lipid profiles today.

Hammad has already participated in research showing that such sphingolipid profiles can be used to predict outcomes in patients with early Type 1 diabetes, another autoimmune disease. These findings were published in the May 2019 issue of the Journal of Clinical Lipidology.

Hammad conducted the study reported in the PLOS ONE article with funding from a pilot project grant from the South Carolina Clinical & Translational Research (SCTR) Institute. SCTR is a Clinical and Translational Science Awards hub headquartered at MUSC and funded by the National Center for Advancing Translational Sciences.

Next, Hammad plans to use these findings to apply for federal funding so that she can test sphingolipid levels in the remainder of the samples in the CCCR patient registry at MUSC. She and Oates will also expand the study to look at other complications of lupus, such as kidney disease.
The content summarized herein is solely the responsibility of the authors of the article and does not necessarily represent the official views of the National Institutes of Health.

About the Medical University of South Carolina

Founded in 1824 in Charleston, the Medical University of South Carolina (MUSC) is the oldest medical school in the South, as well as the state's only integrated, academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and 700 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state's leader in obtaining biomedical research funds, in fiscal year 2018, MUSC set a new high, bringing in more than $276.5 million. For information on academic programs, visit

As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available, while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians' practice plan, and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2019, for the fifth consecutive year, U.S. News & World Report named MUSC Health the number one hospital in South Carolina. To learn more about clinical patient services, visit

MUSC and its affiliates have collective annual budgets of $3 billion. The more than 17,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care.

About the South Carolina Clinical & Translational Research Institute

The South Carolina Clinical and Translational Research (SCTR) Institute is the catalyst for changing the culture of biomedical research, facilitating sharing of resources and expertise, and streamlining research-related processes to bring about large-scale, change in the clinical and translational research efforts in South Carolina. Our vision is to improve health outcomes and quality of life for the population through discoveries translated into evidence-based practice.

Medical University of South Carolina

Related Heart Disease Articles from Brightsurf:

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

New 'atlas' of human heart cells first step toward precision treatments for heart disease
Scientists have for the first time documented all of the different cell types and genes expressed in the healthy human heart, in research published in the journal Nature.

With a heavy heart: How men and women develop heart disease differently
A new study by researchers from McGill University has uncovered that minerals causing aortic heart valve blockage in men and women are different, a discovery that could change how heart disease is diagnosed and treated.

Heart-healthy diets are naturally low in dietary cholesterol and can help to reduce the risk of heart disease and stroke
Eating a heart-healthy dietary pattern rich in vegetables, fruits, whole grains, low-fat dairy products, poultry, fish, legumes, vegetable oils and nuts, which is also limits salt, red and processed meats, refined-carbohydrates and added sugars, is relatively low in dietary cholesterol and supports healthy levels of artery-clogging LDL cholesterol.

Pacemakers can improve heart function in patients with chemotherapy-induced heart disease
Research has shown that treating chemotherapy-induced cardiomyopathy with commercially available cardiac resynchronization therapy (CRT) delivered through a surgically implanted defibrillator or pacemaker can significantly improve patient outcomes.

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.

New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.

Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.

Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.

Read More: Heart Disease News and Heart Disease Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to