A biochemical random number

November 20, 2020

True random numbers are required in fields as diverse as slot machines and data encryption. These numbers need to be truly random, such that they cannot even be predicted by people with detailed knowledge of the method used to generate them.

As a rule, they are generated using physical methods. For instance, thanks to the tiniest high-frequency electron movements, the electrical resistance of a wire is not constant but instead fluctuates slightly in an unpredictable way. That means measurements of this background noise can be used to generate true random numbers.

Now, for the first time, a research team led by Robert Grass, Professor at the Institute of Chemical and Bioengineering, has described a non-physical method of generating such numbers: one that uses biochemical signals and actually works in practice. In the past, the ideas put forward by other scientists for generating random numbers by chemical means tended to be largely theoretical.

DNA synthesis with random building blocks

For this new approach, the ETH Zurich researchers apply the synthesis of DNA molecules, an established chemical research method frequently employed over many years. It is traditionally used to produce a precisely defined DNA sequence. In this case, however, the research team built DNA molecules with 64 building block positions, in which one of the four DNA bases A, C, G and T was randomly located at each position. The scientists achieved this by using a mixture of the four building blocks, rather than just one, at every step of the synthesis.

As a result, a relatively simple synthesis produced a combination of approximately three quadrillion individual molecules. The scientists subsequently used an effective method to determine the DNA sequence of five million of these molecules. This resulted in 12 megabytes of data, which the researchers stored as zeros and ones on a computer.

Huge quantities of randomness in a small space

However, an analysis showed that the distribution of the four building blocks A, C, G and T was not completely even. Either the intricacies of nature or the synthesis method deployed led to the bases G and T being integrated more frequently in the molecules than A and C. Nonetheless, the scientists were able to correct this bias with a simple algorithm, thereby generating perfect random numbers.

The main aim of ETH Professor Grass and his team was to show that random occurrences in chemical reaction can be exploited to generate perfect random numbers. Translating the finding into a direct application was not a prime concern at first. "Compared with other methods, however, ours has the advantage of being able to generate huge quantities of randomness that can be stored in an extremely small space, a single test tube," Grass says. "We can read out the information and reinterpret it in digital form at a later date. This is impossible with the previous methods."
-end-


ETH Zurich

Related Molecules Articles from Brightsurf:

Finally, a way to see molecules 'wobble'
Researchers at the University of Rochester and the Fresnel Institute in France have found a way to visualize those molecules in even greater detail, showing their position and orientation in 3D, and even how they wobble and oscillate.

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.

Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.

Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.

Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.

The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.

Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.

Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.

Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.

Read More: Molecules News and Molecules Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.