Study Of Origin Of Species Enters The Molecular Age

November 20, 1998

Nothing brings two people closer together than sex, but for closely related species of fruit flies, it may be what keeps them apart. Researchers at the University of Chicago have recently discovered a gene that appears to play a crucial role in causing one species to split into two--and stay that way. The gene causes the male progeny of two recently separated species to be sterile--a condition known as hybrid male sterility.

"How speciation occurs is one of the central questions in evolutionary biology," says Chung-I Wu, Ph.D., chairman and professor of the department of ecology & evolution at the University of Chicago, and senior author of the paper in the November 20 issue of Science. "Geographic isolation and changes in the environment are only a part of what drives speciation. There are also changes at the genetic level that are driven by sexual selection. As a result, two newly formed species can't mix back into one."

Many species of insects and mammals exhibit male sterility in inter-species hybrids at the early stages of speciation. For example, the male progeny of the yak-cow cross are sterile. Male 'zonkeys,' the offspring of a zebra and a donkey, are also sterile. Wu speculated that hybrid male sterility must be an early indicator of speciation.

Chau-Ti Ting, a postdoctoral fellow in Wu's lab pinpointed a gene (there may be many) involved in producing sterility in hybrid males. It does this by evolving so rapidly that male offspring produced by two newly divergent or 'sibling' species are so different from their parents that they are unable to make sperm.

The gene Ting thinks contributes to hybrid male sterility is a homeobox gene. Homeobox genes, usually involved in development and cell differentiation, are some of the slowest evolving genes in all of nature. This means that they are almost identical in organisms as diverse as worms and monkeys. But when Wu looked at a certain homeobox gene in two sibling species of fruit fly, D., simulans and D. mauritiana, they were very different.

"Homeobox genes usually don't differ by more than a few base pairs, even when you compare them in humans and invertebrates. But when we looked at this homeobox gene in two very closely related species of fruit fly, they were extremely different, suggesting that this gene is evolving at a highly accelerated rate," says Wu.

Wu thinks that the reason the homeobox gene is on the evolutionary fast track (it evolves 100 to 1,000 times faster than any other homeobox gene studied) is because it controls male sexual function.

Genes pertaining to male reproduction evolve quickly because they are under extreme pressure due to the intense competition among males to fertilize eggs. "The idea is that something might pop up that gives one male an edge in the race to reproduce," says Wu. "The advantageous gene will be selected for and passed on to male progeny."

Usually sexual advantages in males have to do with sperm production, or the composition of the ejaculate, "anything that makes it easier for their sperm to get to the egg," Wu explains. The rapidly changing homeobox gene makes sibling species incompatible and halts the gene flow between them. The species can then evolve separately without their unique innovations being lost by blending.
-end-


University of Chicago

Related Fruit Flies Articles from Brightsurf:

Sestrin makes fruit flies live longer
Researchers identify positive effector behind reduced food intake.

Circular RNA makes fruit flies live longer
The molecule influences the insulin signalling pathway and thus prolongs life

Fruit flies respond to rapid changes in the visual environment
Researchers have discovered a mechanism employed by the fruit fly Drosophila melanogaster that broadens our understanding of visual perception.

How fruit flies flock together in orderly clusters
Opposing desires to congregate and maintain some personal space drive fruit flies to form orderly clusters, according to a study published today in eLife.

Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.

Fruit flies' microbiomes shape their evolution
In just five generations, an altered microbiome can lead to genome-wide evolution in fruit flies, according to new research led researchers at the University of Pennsylvania.

Why fruit flies eat practically anything
Kyoto University researchers uncover why some organisms can eat anything -- 'generalists -- and others have strict diets -- 'specialists'.

Why so fly: MU scientists discover some fruit flies learn better than others
Fruit flies could one day provide new avenues to discover additional genes that contribute to a person's ability to learn and remember.

Fruit flies find their way by setting navigational goals
Navigating fruit flies do not have the luxury of GPS, but they do have a kind of neural compass.

Tolerance to stress is a 'trade-off' as fruit flies age
With the help of the common fruit fly (D. melanogaster), which ages quickly because it only lives about 60 days, FAU neuroscientists provide insights into healthy aging by investigating the effects of a foraging gene on age and stress tolerance.

Read More: Fruit Flies News and Fruit Flies Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.