Brain morphing technology simplifies the surgical treatment for movement disorders

November 21, 2005

Tens of thousands of people who experience movement disorders associated with Parkinson's and a variety of other neurological conditions stand to benefit from a new guidance system that uses computerized brain-mapping techniques to significantly improve an increasingly popular procedure called deep brain stimulation.

DBS has proven to be highly effective in the treatment of movement disorders when standard drug therapies either do not work or have lost their effectiveness. However, the fact that it is an extremely long, difficult and expensive operation, which involves implanting electrodes deep in the brain, has limited its availability.

Since the procedure's approval in 1998, the number of DBS operations performed has grown gradually to about 3,000 annually, although more than 100,000 people a year could stand to benefit from it as a way of treating the tremor, rigidity, stiffness and slowed movement they experience as a result of neurological disorders ranging from dystonia to multiple sclerosis, to Parkinson's disease, to obsessive-compulsive disease.

To improve the procedure further, a team of electrical engineers and neuroscientists at Vanderbilt University has developed a pilot guidance system that automates the most difficult part of the operation: identifying the proper location to insert the electrodes. To work, the electrodes must pass through small nuclei deep in the brain that are about the size of a pea and are not visible in brain scans or to the naked eye. The researchers - writing in a special issue of the journal IEEE Transactions on Medical Imaging published this month - report that the new system can do a better job of identifying the initial location to insert the electrodes than an experienced neurosurgeon.

"The biggest problem with the procedure is that the surgeons cannot see the structure where they have to put the electrode and, as a result, they must spend a considerable amount of time searching for it," says Benoit Dawant, professor of electrical engineering, computer engineering and radiological sciences at Vanderbilt University, who is developing the guidance system in collaboration with Peter Konrad, associate professor of neurological surgery and biomedical engineering.

The only way that the target region can be identified is by its electrical characteristics. So the surgeons must first insert a recording electrode and monitor the electrical activity of the neurons that it touches. Sometimes they have to remove and reinsert the electrode two or more times. Sometimes they have to insert three or four electrodes at the same time in order to find the elusive spot.

"I tell patients that it is something like playing a big game of Battleship," says Konrad, who helped pioneer the procedure. "Like the game, you don't know where the target is until you've made a hit."

Each time the surgeons are forced to reinsert the electrode, it increases the risk of damage to the brain and the length of the operation. When surgeons decide that they have hit the right spot, they implant a stimulating electrode and test it to determine if it reduces the patient's symptoms. Because muscle disorders typically occur only while a person is awake, the patient must remain conscious through the entire procedure.

The operation can take as long as eight to 12 hours to properly place one electrode. (Most patients require two, one in each hemisphere.) "This is extremely rough on patients, who have to be awake through the surgery and have to be locked to the bed," says Konrad. "Anybody who performs this surgery quickly appreciates the need to trim the procedure down to a shorter process."

The computer-aided guidance system compensates for variations in the three-dimensional brain structure of each patient, something that it is very difficult for surgeons to do on their own. This reduces operating times by increasing the odds that the surgeons begin searching closer to the target. The system consists of a three-dimensional brain atlas that was built up by combining the brain scans of 21 post operative DBS patients into one another using sophisticated computer-mapping methods. To predict the location of the target area in a new patient, the researchers map the reference atlas onto the patient's brain scan. When the neurosurgeons have used the system's predictions, they have hit the target area on the first insertion two out of three times, compared with one out of five times when working without it.

"Now, with the use of the atlas, what we are basically doing is plugging the patient's MRI brain scan into the computer, and about three to four hours later it spits back a target that we can use to plan the following week's surgery," says Konrad. This innovation, along with other improvements such as the use of individually made insertion platforms, has substantially reduced the length of the operation: "We have reduced a two-day procedure down to five hours," he says.

Not only does the guidance system save the patient from the risk of a prolonged procedure or undergoing two procedures, it also should cut hospital costs significantly, Konrad adds.

The researchers plan a number of improvements to the guidance system. They have begun to collect data on the effectiveness of the operations and will use that to refine their predictions. They have also set up a system that will collect electrophysiological data from the patient's brains that is collected during the procedure so they can add it to the brain atlas as well. And finally they intend to begin creating individual atlases for different conditions - Parkinson's, essential tremor, dystonia, etc. - in case the precise location of the neurological damage may differ.
The research was funded by Vanderbilt University and FNRS, the Belgian Science Foundation.

Vanderbilt University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to