Targeted antibacterial proteins may offer antibiotic alternative
November 21, 2011SOUTH SAN FRANCISCO, CA -- A novel antibacterial protein targeted against E. coli O157:H7 may offer a way to prevent or treat serious food-borne bacterial infections, as demonstrated in a study published in the December issue of Antimicrobial Agents and Chemotherapy. Results in an animal model of E. coli infection showed that the orally administered protein, developed by AvidBiotics, Inc., could prevent or treat E. coli O157:H7-induced diarrhea and intestinal inflammation when administered either on a preventative basis or after the onset of diarrhea. Moreover, animals treated with the protein also carried and shed fewer of the E. coli O157:H7 bacteria in their feces.
"E. coli O157:H7 contamination of foods like ground meats or produce is a well-publicized public health problem, with life-threatening infection outbreaks reported around the world in recent years," said Dean Scholl, Ph.D., lead author of the publication. "Antibiotics are contraindicated for patients infected with enterohemorrhagic E. coli (EHEC) strains like O157:H7, because many of those drugs induce the bacteria to produce and release harmful toxins. Anti-diarrheal medications also do not benefit infected patients, as they cause the bacteria to be retained in the intestines, leading to greater toxin exposure. Thus the successful development of treatments that can prevent infection or limit symptoms and disease duration and the possible further spread of harmful bacteria without increasing toxin release could benefit both individual patients and affected communities."
The study published by Dr. Scholl and his collaborators at AvidBiotics and Brigham and Women's Hospital/Harvard Medical School assessed AvidBiotics' anti-E. coli O157 protein, termed an Avidocin™ protein, in a rabbit model of infection and reported that:
- The Avidocin protein remained active within the treated animals' intestinal tract for at least 24 hours post administration.
- When given shortly after the animals were infected with E. coli O157:H7 but before they developed active disease, the Avidocin protein inhibited bacterial colonization and/or the symptoms of infection. Animals that received the highest dose of protein studied did not develop diarrhea at any time during the experiment. In contrast, animals given buffer alone developed typical diarrhea within 1-2 days after infection, which worsened by the 3rd day of the study.
- Analyses of colon tissue showed less severe intestinal inflammation in Avidocin protein-treated animals compared to controls. Avidocin protein administration also greatly reduced the number of E. coli O157:H7 recovered from the intestine and the stool of treated animals.
- When the anti-E. coli O157:H7 Avidocin protein was administered to infected animals already exhibiting disease symptoms, the existing diarrhea began to resolve in treated animals compared to animals treated with placebo. This reduction in diarrhea persisted until the experiment was terminated, 9 days post infection, at which time the feces of the treated animals appeared closer to feces from uninfected animals than the still largely liquid stool of the control animals. Thus, even after the onset of diarrhea in E. coli O157:H7-infected animals, administration of the anti-E. coli O157:H7 Avidocin protein could still mitigate the effects of infection.
About the Avidocin™ Protein Platform
AvidBiotics genetically engineers Avidocin proteins from R-type pyocins, antibacterial proteins produced by some Pseudomonas aeruginosa strains. These proteins specifically kill bacteria by binding to the bacterial cell and punching a hole in the cell envelope, causing membrane depolarization and ultimately cell death. AvidBiotics has previously demonstrated that Avidocin proteins can be engineered to recognize and kill in a highly targeted and specific manner a variety of bacteria, including E. coli, Salmonella, Shigella, Clostridium difficile, and Yersinia pestis (the bacterium that causes plague), thus serving as a platform for the production of numerous highly specific antibacterial agents.
AvidBiotics is also currently developing Avidocin proteins against Acinetobacter, a bacterium associated with serious, often broadly antibiotic-resistant infections in Intensive Care Units and those incurred by U.S. military deployed in Iraq and Afghanistan. In addition to the human health care uses of the Avidocin™ technology, AvidBiotics is collaborating with food safety and hygiene company EcoLab to develop antibacterial proteins for use against E. coli O157:H7 in meat processing.
-end-
About AvidBioticsAvidBiotics is a developer of novel, non-antibody proteins as targeted therapeutics against bacteria, viral infections and cancers. The scaffolds of AvidBiotics' proteins exhibit functional potency, e.g. killing, exceeding that of antibodies. AvidBiotics has two proprietary product platforms. The first is this new class of tailorable, targeted bactericidal agents for use in the treatment or prevention of specific bacterial infections. The second specifically flags virus-infected or cancerous cells for enhanced destruction by the Natural Killer and T cells of the potent innate immunity system. AvidBiotics focuses on human therapeutic applications of its technologies, both on its own and in partnership with governmental agencies and research institutions, while taking advantage of further near-term collaborative opportunities offered by specific applications of its products and technology platforms in areas such as food safety, biodefense and animal husbandry. For more information on AvidBiotics, please visit the company's web site at http://www.avidbiotics.com.
Kureczka/Martin Associates
Related Bacteria Articles from Brightsurf:
Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Read More: Bacteria News and Bacteria Current Events
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.