Surprise origin for coronary arteries could speed advances in regenerative medicine

November 21, 2012

November 21, 2012 -- (BRONX, NY) -- During embryonic development, the all-important coronary arteries arise from cells previously considered incapable of producing them, according to scientists at Albert Einstein College of Medicine of Yeshiva University. The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.

The research, carried out in mice and published today in the online edition of the journal Cell, may speed development of regenerative therapies for heart disease.

Each year, more than one million Americans undergo coronary revascularization which includes coronary artery bypass graft (CABG). During CABG, doctors remove a portion of a healthy vein, usually from a patient's leg, then bypass diseased areas of the coronary arteries. While the procedure has become routine and is considered relatively safe and long-lasting, the veins used during bypass do not completely mimic the arteries they bypass. They can sometimes re-clog, a process known as restenosis, requiring further procedures. Therefore, the ability to regenerate coronary arteries could usher in a new wave of more effective cardiac care.

Coronary arteries nourish heart muscle with the nutrients and oxygen it needs for pumping. Heart attacks occur when coronary arteries become blocked, causing heart muscle to die. Recent studies had suggested that during development, the coronary arteries originate from cells of the sinus venosus (a heart cavity that exists only in embryos) or from the epicardium (the heart's outermost layer).

In their study, Einstein scientists used a wide variety of research tools to show that the coronary arteries largely arise from cells of the endocardium, the heart's innermost cell layer. In particular, the arteries arise from endocardial cells lining the ventricles (the two large chambers of the heart).

"The prevailing wisdom was that endocardial cells are terminally differentiated, meaning they cannot become any other cell type," said study leader Bin Zhou, M.D., Ph.D., associate professor of genetics, of pediatrics, and of medicine at Einstein."But our study shows that one population of endocardial cells is actually responsible for forming the coronary arteries."

More specifically, ventricular endocardial cells develop into coronary artery progenitor (precursor) cells, which then go on to form the coronary arteries. Dr. Zhou and his colleagues also identified a key signaling pathway involved in transforming the ventricular endocardial cells into coronary artery progenitor cells. Einstein has filed a patent application related to this research. The Nfatc1 cell technology is available for licensing.

The Einstein researchers are now trying to identify all the signaling mechanisms that guide the development of the coronary arteries, with the aim of one day synthesizing healthy coronary arteries to replace diseased ones. "When provided with the right environmental signals, vascular progenitor cells can form functional vessels in a petri dish," said Dr. Zhou. "If we can figure out the critical signals regulating coronary artery differentiation and formation, then perhaps we could coax ventricular endocardial cells to build new coronary arteries that can replace damaged ones--basically duplicating the way that these vessels are formed in the body," said Dr. Zhou.
-end-
Dr. Zhou's paper is titled, "Endocardial Cells Form the Coronary Arteries by Angiogenesis through Myocardial-Endocardial VEGF Signaling." Other Einstein contributors are Bingruo Wu, M.D.; Zheng Zhang, Ph.D.; Wendy Lui, B.S.; Xiangjian Chen, M.D., PhD.; Yidong Wang, Ph.D.; Alyssa Chamberlain, B.S.; Brian P. O'Rourke, B.S.; David J. Sharp, Ph.D.; Deyou Zheng, Ph.D.; and Jack Lenz, Ph.D. Other contributors include Ricardo A. Moreno-Rodriguez, Ph.D. and Roger R. Markwald, Ph.D., at Medical University of South Carolina, Charleston, SC; H. Scott Baldwin, M.D. at Vanderbilt University, Nashville, TN; and Ching-Pin Chang, M.D., Ph.D., at Stanford University School of Medicine, Stanford, CA.

The study, initiated at Vanderbilt University and completed at Albert Einstein College of Medicine, was supported by grants from the National Institutes of Health (HL078881 to Dr. Zhou, HL100398 to H. Scott Baldwin, and HL85345).

About Albert Einstein College of Medicine of Yeshiva University

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. During the 2009-2010 academic year, Einstein is home to 724 M.D. students, 248 Ph.D.students, 117 students in the combined M.D./Ph.D. program, and 368 postdoctoral research fellows. The College of Medicine has 2,522 fulltime faculty members located on the main campus and at its clinical affiliates. 2011, Einstein received nearly $170 million in awards from the NIH. This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center - Einstein's founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest post-graduate medical training programs in the United States, offering approximately 155 residency programs to more than 2,200 physicians in training. For more information, please visit http://www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Albert Einstein College of Medicine

Related Embryonic Development Articles from Brightsurf:

Unraveling a mystery surrounding embryonic cells
Last year, researchers at the University of California, Riverside, identified the early origins of neural crest cells -- embryonic cells in vertebrates that travel throughout the body and generate many cell types -- in chick embryos.

Organoids produce embryonic heart
Bioengineers at EPFL have used organoids - tiny lab-grown organs - to mimic the early development of the heart in the mouse embryo.

Embryonic heart development: Unprecedented insight from 4D OCT
Thanks to innovations in light-based technology, fresh insights are now available into the biomechanics of mammalian cardiogenesis--and in particular, the pumping dynamics of the mammalian tubular embryonic heart.

CNIC researchers discover a system essential for limb formation during embryonic development
Scientists at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) have identified a system that tells embryonic cells where they are in a developing organ

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

Disruption of glycine receptors to study embryonic development and brain function
Researchers from Max Planck Florida Institute for Neuroscience, University of Toyama, Yamagata University, Cairo University, RIKEN Center for Integrative Medical Sciences and Setsunan University joined forces to further study glycine receptors, particularly glycine receptor alpha-4 (Glra4), during development.

Unlocking the black box of embryonic development
Little is known about the molecular and cellular events that occur during early embryonic development in primate species.

Signaling waves determine embryonic fates
Embryonic stem cells begin to self-organize when they sense interacting waves of molecular signals that help them start -- and stop -- differentiating into patterns.

Shocking embryonic limbs into shape
In a new study published in EPJ E, Vincent Fleury and Ameya Vaishnavi Murukutla from Universite Paris Diderot, Paris, France use the stimulation of chicken embryos with electric shocks to propose a mechanism for vertebrate limb formation.

Using an embryonic pause to save the date
A date palm seedling can pause its development to boost its resilience before emerging into the harsh desert environment.

Read More: Embryonic Development News and Embryonic Development Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.