Architecture of rod sensory cilium disrupted by mutation

November 21, 2012

HOUSTON - (Nov. 22, 2012) - Using a new technique called cryo-electron tomography, two research teams at Baylor College of Medicine (www.bcm.edu) have created a three-dimensional map that gives a better understanding of how the architecture of the rod sensory cilium (part of one type of photoreceptor in the eye) is changed by genetic mutation and how that affects its ability to transport proteins as part of the light-sensing process.

Almost all mammalian cells have cilia. Some are motile and some are not. They play a central role in cellular operations, and when they are defective because of genetic mutations, people can go blind, have cognitive defects, develop kidney disease, grow too many fingers or toes or become obese. Such mutations cause cilia defects known in the aggregate as ciliopathies.

"The major significance of this report lies in our being able to, for the first time, look in three dimensions at the structural alterations in ciliopathies," said Dr. Theodore G. Wensel (http://www.bcm.edu/biochem/index.cfm?pmid=3795), chair of biochemistry and molecular biology at BCM and corresponding author of the report that appears in the journal Cell (www.cell.com). The report is spotlighted on the issue's cover.

In collaboration with the National Center for Macromolecular Imaging (http://ncmi.bcm.edu/ncmi/), led by Dr. Wah Chiu (http://www.bcm.edu/biochem/index.cfm?pmid=3715), professor of biochemistry and molecular biology at BCM, Wensel and his colleagues established such three dimensional images for cilia in three examples of mice known to have cilopathies.

These mice have genetic mutations that lead to defects in the structure of the rod outer segment. The rod outer segment is part of the photoreceptor in the retina called a rod. The rod outer segment contains photosensitive disk membranes that carry rhodopsin, the biological pigment in photoreceptor cells of the retina responsible for the first events that result in the perception of light.

Using cryo-electron tomography, the scientists compared the structures of the rod outer segment in the mutant mice to those in normal mice.

"This is one of the few places in the world where you could do this," said Wensel. The Center, run by Chiu, has powerful cryo-electron microscopes that make tomography possible. To achieve the three-dimensional reconstruction, Dr. Juan T. Chang (http://www.bcm.edu/pda/index.cfm?PMID=8208) in Chiu's Center froze the photoreceptors purified by then-graduate student Jared Gilliam in a special way that made it possible to perform electron microscopy. During the microscopy session, the frozen samples were carefully tilted allowing the researchers to take many two-dimensional images that were used in the computer reconstruction of the three-dimensional map.

The light-sensing outer segments of photoreceptors in the retina are connected to the machinery responsible for protein production in the inner segment by a thin cylindrical bundle of microtubules known as the connecting cilium.

"There is a huge flux of material from the inner segment to the outer segment of the photoreceptor," said Wensel. "When there is a defect, then the animal or patient goes blind."

The three-dimensional structure showed that there are vesicles (small sacs) tethered to membrane filaments.

"It looks as though these vesicles that are tethered contain material that will fuse to the plasma membrane and go up the membrane to the outer segment," said Wensel.

In studies of a mouse model of a disease called Bardet Biedl syndrome, developed by the laboratory of Dr. James Lupski (http://www.bcm.edu/genetics/index.cfm?pmid=10944) professor of molecular and human genetics at BCM, Wensel and first author Gilliam saw something that was almost shocking - a huge accumulation of these vesicles. The Bardet Biedl genes contain the code for a BBsome that forms a membrane coat that makes transport possible through the connecting cilium to the outer coat.

"We would now surmise that the BBsome coat is required for fusion of the plasma membrane or transport up to the outer segment," said Wensel. "It gives us a whole new model for how this works. We need to do more now to nail it down."

"It suggests that aberrant trafficking of proteins is responsible for photoreceptor degeneration," said Gilliam, who is now a postdoctoral associate at The University of Texas Health Science Center at Houston.
-end-
Others who took part in the research include: BCM graduate student Ivette Sandoval; Youwen Zhang and Steven J. Pittler, both of the University of Alabama at Birmingham; and Tiansen Li of the National Eye Institute in Bethesda, Maryland.

Funding for this work came from the National Institutes of Health (EY011900 and EY07981, P41RR002250, EY018143, EY10309, EY10581, EY011731, T32EY007001, Vision Research Core Grant EY002520) and the Robert Welch Foundation.

Baylor College of Medicine

Related Genetic Mutation Articles from Brightsurf:

Genetic study uncovers mutation associated with fibromuscular dysplasia
Researchers report first clinically actionable findings for a rare blood vessel disease in a study of four unrelated families, all with the same genetic variant.

New MDS subtype proposed based on presence of genetic mutation
In a special report published today in the journal Blood, an international working group of experts in myelodysplastic syndromes (MDS) proposes -- for the first time -- the recognition of a distinct subtype of MDS based on the presence of a nonheritable genetic mutation that causes the disease.

New research uncovers how common genetic mutation drives cancer
A new, multicenter study led by Fred Hutchinson Cancer Research Center and Memorial Sloan Kettering Cancer Center determined how a single mutation in splicing factor 3b subunit 1 (SF3B1), the most frequently mutated splicing factor gene, drives the formation of many cancers.

Genetic mutation appears to protect some people from deadly MRSA
An inherited genetic tendency appears to increase the likelihood that a person can successfully fight off antibiotic-resistant staph infections, according to a study led by Duke Health researchers.

Genetic mutation linked to flu-related heart complications
For the first time, research in mice has shown a link between a genetic mutation, flu and heart irregularities that researchers say might one day improve the care of flu patients.

Treatment targeted at a genetic mutation relieves psychosis symptoms
Treatment of psychosis can be targeted to a specific genetic mutation in patients with psychotic disorders, according to a study in Biological Psychiatry, published by Elsevier.

Cardiac genetic mutation may not always predict heart disease
One in 10 people with this condition were born with a mutation in the TTN gene, but -- until now -- it has been unclear whether everyone with these mutations will inevitably develop dilated cardiomyopathy.

Researchers discover genetic mutation behind serious skull disorder
An international collaboration has identified a new genetic mutation behind the premature fusing of the bony plates that make up the skull.

NUP160 genetic mutation linked to steroid-resistant nephrotic syndrome
Mutations in the NUP160 gene, which encodes one protein component of the nuclear pore complex nucleoporin 160 kD, are implicated in steroid-resistant nephrotic syndrome, an international team reports March 25, 2019, in JASN.

Study identifies genetic mutation responsible for tuberculosis vulnerability
Scientists discovered a genetic variant that greatly increases a person's likelihood of developing tuberculosis.

Read More: Genetic Mutation News and Genetic Mutation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.