Flower power to purge poison and produce platinum

November 21, 2012

A consortium of researchers led by WMG at the University of Warwick are to embark on a £3 million research programme called "Cleaning Land for Wealth" (CL4W), that will use a common class of flower to restore poisoned soils while at the same time producing perfectly sized and shaped nano sized platinum and arsenic nanoparticles for use in catalytic convertors, cancer treatments and a range of other applications.

A "Sandpit" exercise organised by the Engineering and Physical Sciences Research Council (EPSRC) allowed researchers from WMG (Warwick Manufacturing group) at the University of Warwick, Newcastle University, The University of Birmingham, Cranfield University and the University of Edinburgh to come together and share technologies and skills to come up with an innovative multidisciplinary research project that could help solve major technological and environmental challenges.

The researchers pooled their knowledge of how to use plants and bacteria to soak up particular elements and chemicals and how to subsequently harvest, process and collect that material. They have devised an approach to demonstrate the feasibility in which they are confident that they can use common classes of flower and plants (such as Alyssum), to remove poisonous chemicals such as arsenic and platinum from polluted land and water courses potentially allowing that land to be reclaimed and reused.

That in itself would be a significant achievement, but as the sandpit progressed the researchers found that jointly they had the knowledge to achieve much more than just cleaning up the land.

As lead researcher on the project Professor Kerry Kirwan from WMG at the University of Warwick explained:

"The processes we are developing will not only remove poisons such as arsenic and platinum from contaminated land and water courses, we are also confident that we can develop suitable biology and biorefining processes (or biofactories as we are calling them) that can tailor the shapes and sizes of the metallic nanoparticles they will make. This would give manufacturers of catalytic convertors, developers of cancer treatments and other applicable technologies exactly the right shape, size and functionality they need without subsequent refinement. We are also expecting to recover other high value materials such as fine chemicals, pharmaceuticals, anti-oxidants etc. from the crops during the same biorefining process".

EPSRC are so taken with the concept that they have now awarded the research consortium £3 million to develop the technology.
-end-
For further information please contact:

Dr Kerry Kirwan, Associate Professor, WMG
University of Warwick
Tel: 44-2476-528-444
Email: Kerry.Kirwan@warwick.ac.uk

PR200 21st November 2012

University of Warwick

Related Arsenic Articles from Brightsurf:

New map reveals global scope of groundwater arsenic risk
Up to 220 million people worldwide, with approximately 94% of them in Asia, could be at risk of drinking well water containing harmful levels of arsenic, a tasteless, odorless and naturally occurring poison.

River-groundwater hot spot for arsenic
Naturally occurring groundwater arsenic contamination is a problem of global significance, particularly in South and Southeast Asian aquifers.

Natural organic matter influences arsenic release into groundwater
Millions of people worldwide consume water contaminated with levels of arsenic that exceed those recommended by the World Health Organization.

New study finds inaccuracies in arsenic test kits in Bangladesh
Researchers at the University of Michigan have raised serious concerns with the performance of some arsenic test kits commonly used in Bangladesh to monitor water contamination.

Bayreuth researchers discover new arsenic compounds in rice fields
University of Bayreuth researchers, together with scientists from Italy and China, have for the first time sys-tematically investigated under which conditions, and to what extent, sulphur-containing arsenic com-pounds are formed in rice-growing soils.

Kids rice snacks in Australia contain arsenic above EU guidelines: Study
Three out of four rice-based products tested have concentrations of arsenic that exceed the EU guideline for safe rice consumption for babies and toddlers.

Arsenic in drinking water may change heart structure
Among young adults, drinking water contaminated with arsenic may lead to structural changes in the heart that raise their risk of heart disease.

Arsenic-breathing life discovered in the tropical Pacific Ocean
In low-oxygen parts of the ocean, some microbes are surviving by getting energy from arsenic.

Parboiling method reduces inorganic arsenic in rice
Contamination of rice with arsenic is a major problem in some regions of the world with high rice consumption.

UN University compares technologies that remove arsenic from groundwater
A UN University study compares for the first time the effectiveness and costs of many different technologies designed to remove arsenic from groundwater -- a health threat to at least 140 million people in 50 countries.

Read More: Arsenic News and Arsenic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.