Captive breeding for thousands of years has impaired olfactory functions in silkmoths

November 21, 2013

Silk: A natural product for 5000 years

The silkmoth Bombyx mori, originally native to China, was domesticated about 5000 years ago. Its larvae, silkworms, enclose themselves in a cocoon when they enter the pupa phase. They spin their cocoon from one single silk thread, which is several hundred meters long. For silk production, the cocoon − together with the pupa inside − is boiled and the silk filament is then unraveled. Special breeding moths are kept for silk farming. After mating female moths lay several hundred eggs from which the new silkworms hatch.

In the 1950s Bombyx mori became a model organism in modern olfactory research. The sex pheromone bombykol, released by female silkmoths, was the first insect pheromone to be characterized chemically. Bombyx mori males' are highly sensitive to even a few molecules of the female attractant, and the sensilla on their antennae are easily accessible for electrodes. This made them an ideal model system for electrophysiological measurements to analyze their olfactory functions. As early as 1956, olfactory receptor responses, so-called electroantennograms, were recorded on Bombyx mori.

Still responsive to pheromones, but not to environmental odors

Scientists from the Department of Evolutionary Neuroethology at the Max Planck Institute for Chemical Ecology and their collaborators from Japan have found that Bombyx mori is now considerably impaired in its olfactory functions due to 5000 years of captive breeding. The moth's perception of environmental odors, which may lead it to its exclusive host plant, the mulberry tree, has been significantly reduced. This was demonstrated when their responses to odor stimulation were compared to those of the closely related wild species Bombyx mandarina. The scientists recorded electroantennograms of individuals of both species that were stimulated with different scents from leaves or flowers.

Morphological analysis revealed that the number of sensilla on the antennae of Bombyx mori females is considerably reduced compared to the abundant sensilla of Bombyx mandarina. In addition, the researchers measured different activity patterns in the brain of the domesticated and the wild silkmoths by using calcium imaging techniques. These patterns were highly variable among individuals of domesticated silkmoths but were largely constant in their wild ancestor group as well as in four other insect species.

Compared to wild moths, domesticated silkmoths seem to have less ability to smell environmental odors with their antennae and to locate host plants due to several millennia in captivity. As oviposition substrate is provided by humans, this ability has become redundant. In the wild, however, selecting an adequate oviposition site is crucial for the survival of the offspring, and thus helps preserve the species.

On the other side, perception of the female-produced attractant bombykol in Bombyx mori males is unabated, although it is not necessary anymore to find the females, as they are presented to the males by the breeders. Probably because bombykol not only attracts males but also triggers mating behavior in the males, it has remained indispensable for reproductive success.

Domestication effects are localized on the sex chromosome

Unlike in mammals, the female ovule determines the sex of the offspring in moths and butterflies. The distinction is made, analogous to the XY chromosomes, between W and Z chromosomes. Males have ZZ, females WZ chromosomes. Because both species, B. mori and B. mandarina, can still be crossbred, the scientists bred hybrids and used them for further olfactory experiments. "The modification of the Bombyx mori olfactory system, namely the reduced perception of environmental odors, is very likely caused by mutations on the female W chromosome. Differences in the signal processing in the moth's brain, however, are not located on the sex chromosomes," Sonja Bisch-Knaden, first author of the study, summarizes the results of the hybrid experiments.

Combining classical methods of electroantennogram recordings with advanced imaging techniques to analyze responses in the olfactory centre of the silk moth brains opens new perspectives in olfactory research: from molecule to behavior. [AO/JWK]
-end-
Original Publication:

Bisch-Knaden, S., Daimon, T., Shimada, T., Hansson, B.S., Sachse, S. (2014). Anatomical and functional analysis of domestication effects on the olfactory system of the silkmoth Bombyx mori. Proc. R. Soc. B, 281: 20132582. DOI 10.1098/rspb.2013.2582 http://dx.doi.org/10.1098/rspb.2013.2582

Further Information:

Dr. Silke Sachse
MPI for Chemical Ecology
+49 3641 57-1416
ssachse@ice.mpg.de

Prof. Dr. Bill S. Hansson
MPI for Chemical Ecology
+49 3641 57-1401
hansson@ice.mpg.de

Contact and picture requests:

Angela Overmeyer M.A.
MPI for Chemical Ecology
Hans-Knöll-Str. 8
07743 Jena
Tel.: +49 3641 57-2110
overmeyer@ice.mpg.de

Max Planck Institute for Chemical Ecology

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.