Scientists show how cells protect their DNA from catastrophic damage

November 21, 2013

Researchers at the University of Copenhagen have unveiled a profound biological process that explains how DNA can be damaged during genome replication. In addition, the scientists developed a new analytical tool to measure the cell's response to chemotherapy, which could have an important impact on future cancer therapy. The results are now published in the scientific journal Cell.

An international team of researchers led by Professor Jiri Lukas from the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen have unveiled a process that explains how DNA can be damaged during genome replication, due to the lack of a critical protein.

Cells need to keep their genomic DNA unharmed to stay healthy and the scientists were able to visualize the process of DNA replication and damage directly in cells with an unprecedented detail. They discovered a fundamental mechanism of how proteins protect chromosomes while DNA is being copied (a process called DNA replication), which relies on a protein called RPA. Cells have a limited amount of this protein, which they use as 'band aids' to protect the DNA temporarily during replication. If they use up the RPA reservoir, their DNA breaks severely and cells are no longer able to divide.

"We now understand that many drugs used in chemotherapy are toxic against tumours because they make DNA replication difficult and force cancer cells to consume their RPA pool much faster than normal cells usually do. As a result, cancer cells are constantly at the verge of falling into a 'replication catastrophe', a condition from which they cannot recover, and which can be used as a powerful means to selectively eliminate cancer cells," says Luis Ignacio Toledo, the first author of this study.

Future impact on cancer diagnosis and treatment

In addition to helping other scientists to comprehend some of the most fundamental processes in cell physiology, the findings could have important implications for cancer diagnosis and treatment by helping understand, at the molecular level, what makes cancer cells different from normal cells.

"The relevance of our discovery is that it provides an explanation for a broad spectrum of previous scientific observations, which on the first glance seemed unrelated, but which we now show can be unified into a simple comprehensive model to understand how proteins protect DNA from catastrophic damage," concludes Luis Ignacio Toledo.
-end-
Contact:

Luis Ignacio Toledo 0045 31101966

Jiri Lukas 0045 35325004

Facts:

The Novo Nordisk Foundation Center for Protein Research (NNF CPR) opened in the spring of 2009 and is an international hub for basic protein research, led by executive director Professor Jiri Lukas. The center covers diverse but complementary research areas including proteomics, protein-based mechanisms of disease, disease systems biology, and protein structure and characterization. All these research areas are supported by state-of-the-art technologies located in one building and NNF CPR is characterized by a unique internal synergy among all research programs. Research at NNF CPR aims at improving the understanding of disease at the molecular level, leading to improved disease diagnostics and treatment.

The Novo Nordisk Foundation Center for Protein Research is supported by a large grant from the Novo Nordisk Foundation (DKK 600 million).

University of Copenhagen

Related Chemotherapy Articles from Brightsurf:

Chemotherapy is used to treat less than 25% of people with localized sarcoma
UCLA researchers have found that chemotherapy is not commonly used when treating adults with localized sarcoma, a rare type of cancer of the soft tissues or bone.

Starved cancer cells became more sensitive to chemotherapy
By preventing sugar uptake, researchers succeeded in increasing the cancer cells' sensitivity to chemotherapeutic treatment.

Vitamin D could help mitigate chemotherapy side effects
New findings by University of South Australia researchers reveal that Vitamin D could potentially mitigate chemotherapy-induced gastrointestinal mucositis and provide relief to cancer patients.

Less chemotherapy may have more benefit in rectal cancer
GI Cancers Symposium: Colorado study of 48 patients with locally advanced rectal cancer receiving neoadjuvant chemotherapy, found that patients receiving lower-than-recommended doses in fact saw their tumors shrink more than patients receiving the full dose.

Male fertility after chemotherapy: New questions raised
Professor Delb├Ęs, who specializes in reproductive toxicology, conducted a pilot study in collaboration with oncologists and fertility specialists from the McGill University Health Centre (MUHC) on a cohort of 13 patients, all survivors of pediatric leukemia and lymphoma.

'Combo' nanoplatforms for chemotherapy
In a paper to be published in the forthcoming issue in NANO, researchers from Harbin Institute of Technology, China have systematically discussed the recent progresses, current challenges and future perspectives of smart graphene-based nanoplatforms for synergistic tumor therapy and bio-imaging.

Nanotechnology improves chemotherapy delivery
Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.

Novel anti-cancer nanomedicine for efficient chemotherapy
Researchers have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy.

Ending needless chemotherapy for breast cancer
A diagnostic test developed at The University of Queensland might soon determine if a breast cancer patient requires chemotherapy or would receive no benefit from this gruelling treatment.

A homing beacon for chemotherapy drugs
Killing tumor cells while sparing their normal counterparts is a central challenge of cancer chemotherapy.

Read More: Chemotherapy News and Chemotherapy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.