Nav: Home

The end of biotechnology as we know it

November 21, 2016

If there were no biotechnology, the world would stand still. "Biotechnologically derived drugs dominate therapy with eight of the top ten best-selling drugs are produced using biotech methods," says Prof. Nigel Titchener-Hooker from the University College London. The European Union is funding research projects in bio-economy with 3.8 Bio Euro in the Horizon2020 program. Additionally, 3.7 Bio Euro are mobilized to drive the biobased value chain through funding public-private-partnerships within the European Bioconsortium between 2014 and 2020, states Dirk Carrez, director of the European Bioconsortium.

Based on huge funding and investments, the world of biotechnology moves quickly forward. New technologies help the industry saving production costs and shorten development times. Using ultra scale-down technologies like tangential flow microfiltration and tangential flow chromatography, process times could be decreased from five hours to minutes. Perfusion systems reduce costs of goods for about 20 % compared to traditional (but still more stable) fed-batch systems, so Hooker-Titchener who believes that personalized medicine will be available by 2025 despite problems with clinical studies and approvals.

As most highly valuable therapeutics are manufactured using CHO cells (Chinese hamster ovary cells), improving these systems is a top priority of the pharmaceutical industry. According to Helene Faustrup Kildegaard from Novo Nordisk, traditional technologies like random integration, down-regulation using RNAs, or knockout via mutagenesis are currently replaced by the CRISPR/CAS approach that helps shorten the cell line development from one year to three months. "We need more than CRISPR like genome stability or an optimization of genome editing," says Faustrup Kildegaard. Rainer Schneider, a key researcher of the Austrian Centre of Industrial Biotechnology, presented more solutions in another way. He talked about his in-vivo evolution and selection system for E. coli with an "extremely large mutation spectrum" that allows selection overnight with only variants with god stability surviving. Scheider pointed out that even a microbial antibody production would be possible.

However, severe challenges are appearing on the scientific horizon. Prof. Huimin Zhao from the University of Illinois showed a fully automatized and dehumanized laboratory where a robot is transferring probes from one machine to the other. "In the future, we will see fast, automated systems for a fast discovery of new products from known or new sequence information. We want to move quickly from a sequence to a product," says Zhao. Thinking one step further, smart computers will analyze upcoming (big) data and define new work for robots that perform all experiments. As high-performance computers are yet able to assess scientific publications -- IBM-Watson already saved and evaluated millions of papers as general manager Davin Kenny mentioned in the Fortune Magazine recently - maybe there won't be much room left for scientists in future.
-end-
Find more information about the European Summit of Industrial Biotechnology 2016 including summaries of the sessions (about protein design, modeling, translation, highly valuable sugar molecules, synthetic biology and more) is available at http://www.esib.at.

The European Summit of Industrial Biotechnology (ESIB) was organized by the Austrian Centre of Industrial Biotechnology (acib), an international Research Centre for Industrial Biotechnology with locations in Vienna, Graz, Innsbruck, Tulln (A), Hamburg, Bielefeld (D), Pavia (I), Rzeszow (P) and Barcelona (E). Using the concepts of nature, acib-scientists replace traditional industrial methods with new, more economic and ecological technologies. http://www.acib.at

Austrian Research Centre of Industrial Biotechnology (ACIB)

Related Biotechnology Articles:

The end of biotechnology as we know it
More than 400 attendees from five continents discussed trends and improvements in biotechnology at the European Summit of Industrial Biotechnology (ESIB) in Graz/Austria and talked many topics like a dehumanized research process.
Biotechnology: A growing field in the developing world
A detailed new report surveys a broad cross-section of biotechnology work across developing countries, revealing steady growth in fields tied to human well-being worldwide.
China releases first report on biotechnology in developing countries
The first report on biotechnology in developing countries revealing an overall picture of their biotechnology growth and competitiveness was released on Nov.
Exclusive: Biotechnology leaders surveyed about impact of Trump presidency
The day following the election of Donald J. Trump as President, a survey of leaders in biotechnology in the United States, conducted by Genetic Engineering & Biotechnology News showed that Trump's presidency will negatively impact NIH research funding as well as STEM education; a plurality said it will also spark a 'brain drain' as foreign-born researchers educated in American universities will be more likely to leave.
Novel 'repair system' discovered in algae may yield new tools for biotechnology
The algae C. reinhardtii uses a novel system for releasing an interrupting sequence from a protein -- a technique that may be useful for protein purification.
More Biotechnology News and Biotechnology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...