Nav: Home

A phone that charges in seconds? UCF scientists bring it closer to reality

November 21, 2016

A team of UCF scientists has developed a new process for creating flexible supercapacitors that can store more energy and be recharged more than 30,000 times without degrading.

The novel method from the University of Central Florida's NanoScience Technology Center could eventually revolutionize technology as varied as mobile phones and electric vehicles.

"If they were to replace the batteries with these supercapacitors, you could charge your mobile phone in a few seconds and you wouldn't need to charge it again for over a week," said Nitin Choudhary, a postdoctoral associate who conducted much of the research published recently in the academic journal ACS Nano.

Anyone with a smartphone knows the problem: After 18 months or so, it holds a charge for less and less time as the battery begins to degrade.

Scientists have been studying the use of nanomaterials to improve supercapacitors that could enhance or even replace batteries in electronic devices. It's a stubborn problem, because a supercapacitor that held as much energy as a lithium-ion battery would have to be much, much larger.

The team at UCF has experimented with applying newly discovered two-dimensional materials only a few atoms thick to supercapacitors. Other researchers have also tried formulations with graphene and other two-dimensional materials, but with limited success.

"There have been problems in the way people incorporate these two-dimensional materials into the existing systems - that's been a bottleneck in the field. We developed a simple chemical synthesis approach so we can very nicely integrate the existing materials with the two-dimensional materials," said principal investigator Yeonwoong "Eric" Jung, an assistant professor with joint appointments to the NanoScience Technology Center and the Materials Science & Engineering Department.

Jung's team has developed supercapacitors composed of millions of nanometer-thick wires coated with shells of two-dimensional materials. A highly conductive core facilitates fast electron transfer for fast charging and discharging. And uniformly coated shells of two-dimensional materials yield high energy and power densities.

Scientists already knew two-dimensional materials held great promise for energy storage applications. But until the UCF-developed process for integrating those materials, there was no way to realize that potential, Jung said.

"For small electronic devices, our materials are surpassing the conventional ones worldwide in terms of energy density, power density and cyclic stability," Choudhary said.

Cyclic stability defines how many times it can be charged, drained and recharged before beginning to degrade. For example, a lithium-ion battery can be recharged fewer than 1,500 times without significant failure. Recent formulations of supercapacitors with two-dimensional materials can be recharged a few thousand times.

By comparison, the new process created at UCF yields a supercapacitor that doesn't degrade even after it's been recharged 30,000 times.

Jung is working with UCF's Office of Technology Transfer to patent the new process.

Supercapacitors that use the new materials could be used in phones and other electronic gadgets, and electric vehicles that could benefit from sudden bursts of power and speed. And because they're flexible, it could mean a significant advancement in wearable tech, as well.

"It's not ready for commercialization," Jung said. "But this is a proof-of-concept demonstration, and our studies show there are very high impacts for many technologies."

In addition to Choudhary and Jung, the research team included Chao Li, Julian Moore and Associate Professor Jayan Thomas, all of the UCF NanoScience Technology Center; and Hee-Suk Chung of Korea Basic Science Institute in Jeonju, South Korea.
-end-


University of Central Florida

Related Supercapacitors Articles:

Stanford scientist's new approach may accelerate design of high-power batteries
New Stanford study describes a model for designing novel materials used in electrical storage devices, such as car batteries and capacitors.
Seaweed: From superfood to superconductor
Seaweed, the edible algae with a long history in some Asian cuisines, and which has also become part of the Western foodie culture, could turn out to be an essential ingredient in another trend: the development of more sustainable ways to power our devices.
Bio-inspired energy storage: A new light for solar power
Inspired by the western Swordfern, a groundbreaking prototype could be the answer to the storage challenge still holding solar back as a total energy solution.
Decorating single layer and bilayer graphene with useful chemical groups
IBS scientists develop a new platform to attach chemical groups on graphene lying on a silica/silicon substrate.
Organic electronics can use power from socket
Organic light-emitting devices and printed electronics can be connected to a socket in the wall by way of a small, inexpensive organic converter, developed in a collaboration between Linköping University and Umeå University.
Novel 3-D manufacturing leads to highly complex, bio-like materials
Washington State University researchers have developed a unique, 3-D manufacturing method that for the first time rapidly creates and precisely controls a material's architecture from the nanoscale to centimeters -- with results that closely mimic the intricate architecture of natural materials like wood and bone.
A rose to store energy
A special structure for storing energy known as a supercapacitor has been constructed in a plant for the first time.
Squishy supercapacitors bathed in green tea could power wearable electronics
Wearable electronics are here -- the most prominent versions are sold in the form of watches or sports bands.
Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes
Conducting electric current in the solution results in the efficient nano structure formatin on the copper substrate. using this technique high performance copper hydroxide supercapacitor electrodes have been fabricated.
Bright future for energy devices
A new material invented by Michigan Technological University researchers embeds sodium metal in carbon and could improve electrode performance in energy devices.

Related Supercapacitors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...