Enhanced nitrous oxide emissions found in field warming experiment in the Arctic

November 21, 2016

The Arctic is warming rapidly, with projected temperature increases larger than anywhere else in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C) and nitrogen (N). Warming of arctic soils and thawing of permafrost thus can have substantial consequences for the global climate, as the large C and N stores could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.

The impact of warming on the release of CO2 and CH4 is currently a hot topic in numerous studies carried out in the Arctic. Previous research of the Biogeochemistry research group at the Department of Environmental and Biological Sciences, University of Eastern Finland, has shown, however, that arctic soils are further a relevant source of the strong greenhouse gas N2O - nearly 300 times more powerful than CO2 in warming the climate. The relevance of this finding, and a potentially even larger N2O release in a warming Arctic, is now being addressed by researchers of the same research group. These results are recently published in Global Change Biology -- a leading journal in environmental science.

The study provides the first field-based evidence that arctic N2O emissions increase when the Arctic is warming; and that hampered plant growth plays a substantial role in regulating Arctic greenhouse gas exchange. Besides the increased emissions of N2O, the authors observed significant increases in the seasonal release of CO2 and CH4 as a result of only a mild temperature increase, and dug deeply into the reason behind the observed changes by detailed soil and vegetation measurements. One of the major conclusions drawn from this study, with potential far-reaching implications, is that even mild air warming of less than 1°C is triggering greenhouse gas production at depth: enhanced input of labile organic substances from the soil surface, transported to deeper soil layers via leaching, greatly influences arctic greenhouse gas biogeochemistry. Since leaching processes as well as arctic N2O emissions are not yet well incorporated in Arctic biogeochemical climate models, they pose a challenge for future research.
-end-
The Biogeochemistry research group conducted the study in co-operation with researchers from Komi Science Center, Russia, and Finnish Meteorological Institute. The research was embedded within international, Nordic and European funded projects, mainly the Nordic Center of Excellence DEFROST (coordinated by Prof. T. R. Christensen, Lund University, Sweden) and European Union project PAGE21 (coordinated by H. W. Hubberten, Alfred Wegener Institute, Potsdam, Germany), and supported by the Academy of Finland (project CryoN), University of Eastern Finland strategic funding (project FiWER) and JPI Climate project COUP.

For further information, please contact:

M.Sc. Carolina Voigt (PhD student, main author)
tel.: 358-505628735
carolina.voigt@uef.fi

Dr. Christina Biasi (Research Director)
tel: 358-403553810
christina.biasi@uef.fi

Dr. Maija Marushchak (Postdoctoral Researcher)
tel: 358-504135442
maija.marushchak@uef.fi

Research article:

Voigt, C., Lamprecht, R. E., Marushchak, M. E., Lind, S. E., Novakovskiy, Alexander, Aurela, M., Martikainen, P. J., Biasi, C. 2016: Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane and nitrous oxide. Global Change Biology. DOI: 10.1111/gcb.13563

University of Eastern Finland

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.