Research reveals insight into how lung cancer spreads

November 21, 2016

A cellular component known as the Golgi apparatus may play a role in how lung cancer metastasizes, according to researchers at The University of Texas MD Anderson Cancer Center whose findings were reported in the Nov. 21 online issue of the Journal of Clinical Investigation.

The Golgi apparatus, often referred to as a cellular "post office" for its ability to package proteins into vesicles for transportation to other sites within or outside the cell, may offer a new therapeutic approach for preventing metastasis. Think of vesicles as miniature mail trucks composed of a fatty shell filled with secretory liquids that travel from the Golgi to destinations within the cell where their contents are put to use. The Golgi can appear as a compacted membranous "stack" near the cell's nucleus or as a dispersed system of interconnected membranes. Vesicles can "bud" from the Golgi in either form.

"Our findings show that certain proteins in the Golgi that control Golgi compaction may actually promote vesicle budding and transport and enhance the tumor cell's ability to metastasize" said Jonathan Kurie, M.D., professor of Thoracic Head and Neck Medical Oncology. "These findings highlight the potential utility of targeting certain cellular processes in the Golgi."

According to Kurie, tumor cells gain their metastatic ability through a Golgi-related process driving the budding and transport of secretory vesicles. Unknown before this study was whether Golgi compaction was responsible for vesicular trafficking leading to metastasis. This study shows that Golgi compaction is associated with EMT or epithelial-to-mesenchymal transition, a process that allows a cell to detach and move away from its neighbors during wound healing and other normal processes and is thought to play a role in cancer cell migration.

Using lung adenocarcinoma cell lines isolated from mice and patients, Kurie's team found that EMT depends on a Golgi protein called PAQR11 for successful tumor cell migration and metastasis in lung cancers.

"We concluded that, through PAQR11, tumor cells can hijack a normal Golgi compaction process in order to gain metastatic ability," said Kurie.
-end-
MD Anderson study team participants included Xiaochao Tan, Ph.D.; Priyam Banerjee; Ph.D., Hou-Fu Guo, Ph.D.; Daniela Pankova, Ph.D.; Xin Liu, Ph.D.;Yongming Xue, Jonathon Roybal and Don Gibbons, M.D., all of Thoracic Head and Neck Medical Oncology; Tomasz Zal, Ph.D., Immunology; and Chad Creighton, Ph.D., Bioinformatics and Computational Biology. Other participating institutions include the University of Michigan, Ann Arbor, Mich.; Ewha Woman's University School of Medicine, Seoul, South Korea; University of York, York, U.K.; Harbin Medical University Cancer Hospital, Harbin, China; University of Houston and Baylor College of Medicine, Houston.

The study was funded by the National Institutes of Health (R01CA181184, R01CA125123, GM087364, GM105920, GM112786P30, EY007551, K08CA151661, NRF-2010-0027945, CA015672, 1S10OD012304-01, and 1S10RR09552-01), the American Cancer Society (RGS-09-278-01-CSM), the Cancer Prevention Research Institute of Texas (RP120713), and MCubed and the Fastforward Protein Folding Disease Initiative at the University of Michigan.

University of Texas M. D. Anderson Cancer Center

Related Tumor Cells Articles from Brightsurf:

A more sensitive way to detect circulating tumor cells
Breast cancer is the most frequently diagnosed cancer in women, and metastasis from the breast to other areas of the body is the leading cause of death in these patients.

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

How to prevent the spread of tumor cells via the lymph vessels
Scientists from the German Cancer Research Center and the Mannheim Medical Faculty of the University of Heidelberg identified a new way to block the dangerous spread of tumor cells via lymphatic vessels.

The CNIO reprograms CRISPR system in mice to eliminate tumor cells without affecting healthy cells
CNIO researchers destroyed Ewing's sarcoma and chronic myeloid leukaemia tumor cells by using CRISPR to cut out the fusion genes that cause them.

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Read More: Tumor Cells News and Tumor Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.