Moon's crust underwent resurfacing after forming from magma ocean

November 21, 2017

The Earth's Moon had a rough start in life. Formed from a chunk of the Earth that was lopped off during a planetary collision, it spent its early years covered by a roiling global ocean of molten magma before cooling and forming the serene surface we know today.

A research team led by The University of Texas at Austin Jackson School of Geosciences took to the lab to recreate the magmatic melt that once formed the lunar surface and uncovered new insights on how the modern moonscape came to be. Their study shows that the Moon's crust initially formed from rock floating to the surface of the magma ocean and cooling. However, the team also found that one of the great mysteries of the lunar body's formation - how it could develop a crust composed of just one mineral - cannot be explained by the initial crust formation and must have been the result of some secondary event.

The results were published on Nov. 21 in the Journal for Geophysical Research: Planets.

"It's fascinating to me that there could be a body as big as the Moon that was completely molten," said Nick Dygert, an assistant professor at the University of Tennessee, Knoxville who led the research while a postdoctoral researcher in the Jackson School's Department of Geological Sciences. "That we can run these simple experiments, in these tiny little capsules here on Earth and make first order predictions about how such a large body would have evolved is one of the really exciting things about mineral physics."

Dygert collaborated with Jackson School Associate Professor Jung-Fu Lin, Professor James Gardner and Ph.D. student Edward Marshall, as well as Yoshio Kono, a beamline scientist at the Geophysical Laboratory at the Carnegie Institution of Washington.

Large portions of the Moon's crust are made up of 98 percent plagioclase--a type of mineral. According to prevailing theory, which the study calls into question, the purity is due to plagioclase floating to the surface of the magma ocean over hundreds of millions of years and solidifying into the Moon's crust. This theory hinges on the magma ocean having a specific viscosity, a term related to the magma's "gooiness," that would allow plagioclase to separate from other dense minerals it crystallized with and rise to the top.

Dygert decided to test the plausibility of this theory by measuring the viscosity of lunar magma directly. The feat involved recreating the molten material in the lab by flash melting mineral powders in Moon-like proportions in a high pressure apparatus at a synchrotron facility, a machine that shoots out a concentrated beam of high energy X-rays, and then measuring the time it took for a melt-resistant sphere to sink through the magma.

"Previously, there had not been any laboratory data to support models," said Lin. "So this is really the first time we have reliable laboratory experimental results to understand how the Moon's crust and interior formed."

The experiment found that the magma melt had a very low viscosity, somewhere between that of olive oil and corn syrup at room temperature, a value that would have supported plagioclase flotation. However, it would have also led to mixing of plagioclase with the magma, a process that would trap other minerals in between the plagioclase crystals, creating an impure crust on the lunar surface. Because satellite-based investigations demonstrate that a significant portion of the crust on the Moon's surface is pure, a secondary process must have resurfaced the Moon, exposing a deeper, younger, purer layer of flotation crust. Dygert said the results support a "crustal overturn" on the lunar surface where the old mixed crust was replaced with young, buoyant, hot deposits of pure plagioclase. The older cruse could have also been eroded away by asteroids slamming into the Moon's surface.

Dygert said the study's results exemplify how small-scale experiments can lead to large-scale understanding of geological processes that build planetary bodies in our solar system and others.

"I view the Moon as a planetary lab," Dygert said. "It's so small that it cooled quickly, and there's no atmosphere or plate tectonics to wipe out the earliest processes of planetary evolution. The concepts described here could be applicable to just about any planet."
-end-


University of Texas at Austin

Related Lunar Surface Articles from Brightsurf:

Research helps people, lunar rovers, get there on time
Illinois graduate student Pranay Thangeda relies on the bus system in Champaign-Urbana to get to class.

Digging into the far side of the moon: Chang'E-4 probes 40 meters into lunar surface
A little over a year after landing, China's spacecraft Chang'E-4 is continuing to unveil secrets from the far side of the Moon.

One small grain of moon dust, one giant leap for lunar studies
Scientists have found a new way to analyze the chemistry of the moon's soil using a single grain of dust brought back by Apollo 17 astronauts in 1972.

New research sheds light on the ages of lunar ice deposits
The discovery of ice deposits in craters scattered across the Moon's south pole has helped to renew interest in exploring the lunar surface.

Study suggests ice on lunar south pole may have more than 1 source
New research sheds light on the ages of ice deposits reported in the area of the Moon's south pole -- information that could help identify the sources of the deposits and help in planning future human exploration.

Reconstructing the first successful lunar farside landing
A research team, headed by Prof. LI Chunlai from the National Astronomical Observatories of Chinese Academy of Sciences has published a full reconstruction of the Chang'E-4's landing.

NASA's LRO sheds light on lunar water movement
Scientists using an instrument aboard LRO observed water molecules moving around the dayside of the moon.

NASA's Solar Dynamics Observatory catches lunar freeze frame
On March 6, NASA's Solar Dynamics Observatory watched a lunar transit in space -- one in which the satellite's path made the Moon appear to stand still, then backtrack.

First look: Chang'e lunar landing site
On Jan. 30, NASA's Lunar Reconnaissance Orbiter caught views of the Chinese Chang'e 4 lander on the floor of the Moon's Von Kármán crater.

Scientists explain formation of lunar dust clouds
Physicists from the Higher School of Economics and Space Research Institute have identified a mechanism explaining the appearance of two dusty plasma clouds resulting from a meteoroid that impacted the surface of the Moon.

Read More: Lunar Surface News and Lunar Surface Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.