Nav: Home

Chinese scientists unlock structural secrets of whale baleen

November 21, 2018

Chinese scientists working with other researchers have for the first time uncovered the underlying mechanisms of the hierarchical structure of baleen, with an eye toward developing advanced engineered materials.

In a recent publication, Dr. Bin Wang from the Shenzhen Institutes of Advanced Technology of the Chinese Academy of Sciences, in collaboration with Professors Meyers, Sullivan and Pissarenko from the University of California, San Diego, and Professors Espinosa and Zaheri from Northwestern University (USA), revealed how underlying mechanisms of the hierarchical structure of baleen contribute to its exceptional and unique fracture behavior.

The ocean possesses a cornucopia of organisms that thrive through ingenious strategies, thus providing a wealth of inspiration for innovation. Baleen whales are particularly worth studying due to the many important properties of their characteristic baleen.

Whale baleen is the filter-feeding apparatus inside the oral cavity of mysticetes (baleen whales). It consists of a series of parallel plates suspended from the palate down both sides of the mouth and is the most mineralized material of the keratins. Baleen allows for efficient feeding on great quantities of small zooplankton. This filtering mechanism has enabled mysticetes to evolve into the largest living creatures on earth.

Taking the place of teeth, baleen withstands a lifetime of forces generated by water flow and prey, without fracturing. Indeed, fracture toughness, which measures structural integrity for reliable functioning, is a crucial material property for baleen as well as for materials utilized in marine applications.

Although rarely studied, baleen has long been known to be both strong and flexible. It was a popular material used in corsets from the 11th to the 20th centuries and has been used in Alaskan Native basketry.

Research by Prof. Wang and colleagues shows that the nanoscale structure of baleen's intermediate filaments and mineral crystals, which are embedded in an amorphous matrix, increases its stiffness and strength. Furthermore, microscale tubular lamellae control the direction of crack propagation in case of fracture, and buckle and shear under compression. In addition, baleen's sandwich-tubular structure boosts flexural stiffness and strength with a favorable weight saving.

"Baleen has a highly anisotropic toughness," said Prof. Meyers. "In the longitudinal direction, cracks propagate with ease, leading to desirable delamination, fraying, and formation of bristles, necessary for the filtering action, while in the transverse direction, crack propagation is resisted by the tubular structure, providing the required resistance to water flow and prey impact."

Quasi-static and dynamic experiments, which support the anisotropic fracture behavior of baleen, showed a ductile-to-brittle transition, with a strain rate increasing in the dry condition but absent in the hydrated condition.

Related analysis incorporating the water plasticizing effect and strain-rate stiffening provided new information on baleen behavior under competing factors of hydration and dynamic loading, which is a key consideration for designing new engineering materials for the marine environment.

Prof. Wang said it is "amazing and exciting" to study baleen from a material engineering perspective. Wang emphasized that new findings in material design related to baleen can help achieve the "ultimate goal" of developing advanced engineered materials.
-end-


Chinese Academy of Sciences Headquarters

Related Baleen Whales Articles:

A better pregnancy test for whales
To determine whale pregnancy, researchers have relied on visual cues or hormone tests of blubber collected via darts, but the results were often inconclusive.
Why whales are so big, but not bigger
Whales' large bodies help them consume their prey at high efficiencies, a more than decade-long study of around 300 tagged whales now shows, but their gigantism is limited by prey availability and foraging efficiency.
Whales stop being socialites when boats are about
The noise and presence of boats can harm humpback whales' ability to communicate and socialise, in some cases reducing their communication range by a factor of four.
Endangered whales react to environmental changes
Some 'canaries' are 50 feet long, weigh 70 tons, and are nowhere near a coal mine.
Stranded whales detected from space
A new technique for analysing satellite images may help scientists detect and count stranded whales from space.
Researchers use drones to weigh whales
Researchers from Aarhus Institute of Advanced Studies (AIAS) in Denmark and Woods Hole Oceanographic Institution (WHOI) in the US devised a way to accurately estimate the weight of free-living whales using only aerial images taken by drones.
Plastic in Britain's seals, dolphins and whales
Microplastics have been found in the guts of every marine mammal examined in a new study of animals washed up on Britain's shores.
Otago researcher contributes piece to the puzzle of baleen whales' evolution
An Otago researcher has added another piece to the puzzle of the evolution of modern baleen whales with a world-first study examining the teeth and enamel of baleen whales' ancestors.
Groups of pilot whales have their own dialects
A new study from the Woods Hole Oceanographic Institution (WHOI) has found that short-finned pilot whales living off the coast of Hawai'i have their own sorts of vocal dialects, a discovery that may help researchers understand the whales' complex social structure.
Whales lost their teeth before evolving hair-like baleen in their mouths
Rivaling the evolution of feathers in dinosaurs, one of the most extraordinary transformations in the history of life was the evolution of baleen -- rows of flexible hair-like plates that blue whales, humpbacks and other marine mammals use to filter relatively tiny prey from gulps of ocean water.
More Baleen Whales News and Baleen Whales Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.