Nav: Home

How do flying bees make perfect turns?

November 21, 2018

If you've ever lost your balance standing on a bus that takes a sharp turn at speed or felt your car skid when you drive around a corner too fast, you've experienced the effects of centrifugal force. Turning while simultaneously moving forwards creates a force that pulls the turning object away from the direction of the turn. The faster you're going and the sharper the turn, the more centrifugal force you experience, and the more likely you are to lose control.

This is why we and other animals tend to slow down when we approach a turn. Scientists have observed this behaviour in a few animals; however, Professor Mandyam Srinivasan's lab is the first to mathematically analyse the relationship between speed, curvature, and centrifugal force in this phenomenon.

Bees maintain constant centrifugal force while turning

The study by PhD student Mr Mahadeeswara Mandiyam and Professor Srinivasan at the Queensland Brain Institute, UQ, used a high-speed-multi-camera system to capture video footage of bees loitering outside their hive when the entrance was temporarily blocked, creating a 'bee cloud' outside the hive.

This type of semi-outdoor, 'bee cloud' experiment is the first of its kind, and is significantly closer to reality than previous experiments used for studying collision avoidance behaviour in bees.

The high speed videos were analysed mathematically to study the flight behaviour of bees in the cloud.

Professor Srinivasan and Mr Mandiyam hoped to better understand the complex manoeuvre of maintaining a desired flight trajectory while turning without disruption from centrifugal force.

The bees' speed, acceleration, and sharpness of turn were all computed using vector calculus to investigate how bees maintain control while turning.

The scientists found that bees' speed decreases when entering a turn, and increases when exiting. This mathematically confirms observations of turning behaviour of other animals such as fruit flies, bats, and horses.

Significantly, bees were able to maintain a largely constant centripetal acceleration while turning, regardless of how sharp the turns were or how fast the bees were travelling, which minimised the effects of centrifugal force on their flight path. Centripetal force pulls an object towards the centre of the turn, while centrifugal force pushes it away from the centre.

Bees slow their speed to keep forces constant

The researchers hypothesised this constant centripetal acceleration was the result of active efforts by the bees to reduce 'sideslips', or the loss of control caused by excess centrifugal force (like when a bus turns too quickly and you fall over) by managing their speed.

"When a bee is making a turn, it cleverly reduces its speed in an appropriate way so that the centrifugal force that it experiences is always constant," Mr Mandiyam said.

"The sharper a turn is and the faster the bee is going, the greater the centrifugal force that the bee will experience; the bee deals with this problem by slowing down when it makes sharper turns," he said.

Interestingly, the bees showed no preference for left or right turns, which can be an important aspect of collision avoidance in animals.

The researchers also found that bees held about the same amount of acceleration during both loitering turns and close encounters with other bees, meaning the bees' turning dynamics were the same, regardless of the context.

The researchers are now exploring the sensory information used to guide collision avoidance manoeuvres during these close-encounter turns.

Towards creating better flight control

Bee flight patterns have long been of interest to Professor Srinivasan and his lab. They hope to use a greater understanding of bee flight behaviour to incorporate in aerial robots and ground vehicles with advanced flight control and navigational abilities.

"Our main goal is to see how bees avoid collisions, which is the central aim of my PhD," Mr Mandiyam said.

"This understanding can be used in robotics, and also applies to aircraft, as well as ground vehicles.

"If the vehicle needs to negotiate a sharp turn, it has to do so in such a way that the centrifugal force is within certain manageable limits, otherwise it can shoot off in what's called a sideslip."

"We can apply our knowledge of how bees perform coordinated turns to these situations to avoid sideslips in aerial and ground vehicles."
-end-
The paper was published in Scientific Reports, and was supported by a UQ International student scholarship, a Boeing top-up scholarship, and an Australian Discovery Research Grant.

University of Queensland

Related Bees Articles:

Quantifying objects: bees recognize that six is more than four
A new study at the University of Cologne proves that insects can perform basic numerical cognition tasks.
Prescribed burns benefit bees
Freshly burned longleaf pine forests have more than double the total number of bees and bee species than similar forests that have not burned in over 50 years, according to new research from North Carolina State University.
Insecticides are becoming more toxic to honey bees
Researchers discover that neonicotinoid seed treatments are driving a dramatic increase in insecticide toxicity in U.S. agricultural landscapes, despite evidence that these treatments have little to no benefit in many crops.
Neonicotinoids: Despite EU moratorium, bees still at risk
Since 2013, a European Union moratorium has restricted the application of three neonicotinoids to crops that attract bees because of the harmful effects they are deemed to have on these insects.
Bees 'surf' atop water
Ever see a bee stuck in a pool? He's surfing to escape.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
Where are the bees? Tracking down which flowers they pollinate
Earlham Institute (EI), with the University of East Anglia (UEA), have developed a new method to rapidly identify the sources of bee pollen to understand which flowers are important for bees.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.
Trees for bees
Planting more hedgerows and trees could hold the key to helping UK bees thrive once again, a new study argues.
More Bees News and Bees Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.