Nav: Home

Building better batteries by borrowing from biology

November 21, 2018

Osaka, Japan - A research team at Osaka University has reported a new advance in the design of materials for use in rechargeable batteries, under high humidity conditions. Using inspiration from living cells that can block smaller particles but let larger particles pass through, the researchers were able to create a material with highly mobile potassium ions that can easily migrate in response to electric fields. This work may help make rechargeable batteries safe and inexpensive enough to drastically reduce the cost of electric cars and portable consumer electronics.

Rechargeable lithium-ion batteries are widely used in laptops, cell phones, and even electric and hybrid cars. Unfortunately, these batteries are expensive, and have even been known to burst into flames on occasion. New materials that do not use lithium could reduce the cost and improve the safety of these batteries, and have the potential to greatly accelerate the adoption of energy-efficient electric cars. Both sodium and potassium ions are potential candidates that can be used to replace lithium, as they are cheap and in high supply. However, sodium and potassium ions are much larger ions than lithium, so they move sluggishly through most materials. These positive ions are further slowed by the strong attractive forces to the negative charges in crystalline materials. "Potassium ions possess low mobility in the solid state due to their large size, which is a disadvantage for constructing batteries," explains corresponding author Takumi Konno.

To solve this problem, the researchers used the same mechanism your cells employ to allow the large potassium ions to pass through their membranes while simultaneously keeping out smaller particles. Living systems achieve this seemingly impossible feat by considering not just the ion themselves, but also the surrounding water molecules, called the "hydration layer," that are attracted to the ion's positive charge. In fact, the smaller the ion, the larger and more tightly bound its associated hydration layer will be. Specialized potassium channels in cell membranes are just the right size to allow hydrated potassium ions to pass through, but block the large hydration layers of smaller ions.

The researchers developed an ionic crystal using rhodium, zinc, and oxygen atoms. Just as with the selective biological channels, the mobility of the ions in the crystal was found to be higher for the bigger potassium ions, compared with the smaller lithium ions. In fact, the potassium ions moved so easily, the crystal was classified as a "superionic conductor." The researchers found that the current material had the largest hydrated potassium ion mobility ever seen to date.

"Remarkably, the crystal exhibited a particularly high ion conductivity due to the fast migration of hydrated potassium ions in the crystal lattice" lead author Nobuto Yoshinari says. "Such superionic conductivity of hydrated potassium ions in the solid state is unprecedented, and may lead to both safer and cheaper rechargeable batteries."
-end-
This work "Mobility of hydrated alkali metal ions in metallosupramolecular ionic crystals" was published in Chemical Science at DOI: https://doi.org/10.1039/c8sc04204g

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Batteries Articles:

A new concept could make more environmentally friendly batteries possible
A new concept for an aluminium battery has twice the energy density as previous versions, is made of abundant materials, and could lead to reduced production costs and environmental impact.
Overcome the bottleneck of solid electrolytes for Li batteries
On Aug 21st, Prof. MA Cheng from the University of Science and Technology of China (USTC) and his collaborators proposed an effective strategy to address the electrode-electrolyte contact issue that is limiting the development of next-generation solid-state Li batteries.
Dangerous wild grass will be used in batteries
Hogweed, which has grown over vast territories of Russia, can be useful as a material for batteries.
Self-repairing batteries
Engineers at the University of Tokyo continually pioneer new ways to improve battery technology.
A close look at lithium batteries
Batteries with metallic lithium anodes offer enhanced efficiency compared to conventional lithium-ion batteries because of their higher capacity.
Advances point the way to smaller, safer batteries
New Cornell research advances the design of solid-state batteries, a technology that is inherently safer and more energy-dense than today's lithium-ion batteries, which rely on flammable liquid electrolytes for fast transfer of chemical energy stored in molecular bonds to electricity.
The secret life of batteries
A world with faster-charging batteries begins with an understanding of how positively charged lithium ions move through the electrode to deliver energy.
Cartilage could be key to safe 'structural batteries'
Your knees and your smartphone battery have some surprisingly similar needs, a University of Michigan professor has discovered, and that new insight has led to a 'structural battery' prototype that incorporates a cartilage-like material to make the batteries highly durable and easy to shape.
Focusing on the negative is good when it comes to batteries
Fluoride-based batteries have the potential to last up to eight times longer than those in use today.
Building better batteries by borrowing from biology
Using knowledge of biological ion channels, Osaka University researchers developed a new crystalline material containing potassium that may one day replace the lithium-based technology currently used in rechargeable batteries.
More Batteries News and Batteries Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab