New Alzheimer risk gene discovered

November 21, 2019

A new paper in the Journal of Neuropathology & Experimental Neurology finds a gene that may help explain a large part of the genetic risk for developing Alzheimer disease.

Late-onset Alzheimer disease, the most common form of the illness, is a devastating neurological condition with aspects of heritable risk that are incompletely understood. Unfortunately, the complexity of the human genome and shortcomings of earlier research are limiting factors, so that some genetic phenomena were not surveyed completely in prior studies. For example, there are many incompletely mapped genomic regions, and areas with repetitive sequences, that could not be studied previously.

Although Alzheimer's is known to be largely heritable, a substantial proportion of the actual genetic risk for the disease has remained unexplained, despite extensive studies. This knowledge gap is known to researchers are the "missing (or hidden) heritability" problem. For example, while heritability explained 79% of late-onset Alzheimer disease risk in a Swedish twin study, common risk variants identified by pervious genetic studies explained only 20% to 50% of late-onset Alzheimer disease. In other words, a relatively large amount of genetic influence on late-onset Alzheimer disease risk was not explained by prior genetic studies.

Recent advances in sequencing technologies have enabled more comprehensive studies. Such developments allow for more precise and accurate identification of genetic material than was available in earlier gene variant studies.

In the present study, researchers analyzed Alzheimer's Disease Sequencing Project data derived from over 10,000 people (research volunteers who agreed to have their genetic data evaluated in combination with their disease status), with the goal of identifying genetic variation associated with late-onset Alzheimer disease.

Preliminary results found evidence of late-onset Alzheimer disease -linked genetic variation within a segment of a gene called Mucin 6. Although the underlying mechanisms are mostly still unknown, researchers here believe that it's possible to draw credible and testable hypotheses based on these results. For example, the genetic variant that was associated with Alzheimer's disease risk may implicate a biochemical pathway in the brain that then represents a potential therapeutic target, a topic for future studies.

Corresponding authors were Yuriko Katsumata and Peter Nelson, both from the University of Kentucky. Dr. Nelson said of this study, "Our findings were made in a group of patients that is relatively small for a genetics study--some recent studies included hundreds of thousands of research subjects! That small sample size means two things: first, we should exercise caution and we need to make sure the phenomenon can be replicated in other groups; and second, it implies that there is a very large effect size--the genetic variation is strongly associated with the disease."
-end-
The paper, "Alzheimer Disease Pathology-Associated Polymorphism in a Complex Variable Number of Tandem Repeat Region Within the MUC6 Gene, Near the AP2A2 Gene," is available to the public on November 21, at one minute after midnight EST.

Direct correspondence to:

Peter T. Nelson
Sanders-Brown Center on Aging
University of Kentucky
800 S. Limestone Ave.
Lexington, KY 40536
peter.nelson@uky.edu

To request a copy of the study, please contact:

Daniel Luzer
Daniel.Luzer@oup.com

Oxford University Press USA

Related Genetic Variation Articles from Brightsurf:

How genetic variation gives rise to differences in mathematical ability
DNA variation in a gene called ROBO1 is associated with early anatomical differences in a brain region that plays a key role in quantity representation, potentially explaining how genetic variability might shape mathematical performance in children, according to a study published October 22nd in the open-access journal PLOS Biology by Michael Skeide of the Max Planck Institute for Human Cognitive and Brain Sciences, and colleagues.

Genetic variation unlikely to influence COVID-19 morbidity and mortality
A comprehensive search of genetic variation databases has revealed no significant differences across populations and ethnic groups in seven genes associated with viral entry of SARS-CoV-2.

Researchers find pronghorn exhibit little genetic variation despite landscape obstacles
While previous research shows landscape features such as major highways restrict the daily and seasonal movements of pronghorn and increase mortality risk, this study found little, if any, evidence that these barriers affect genetic connectivity among Wyoming pronghorn.

gnomAD Consortium releases its first major studies of human genetic variation
For the last eight years, the Genome Aggregation Database (gnomAD) Consortium (and its predecessor, the Exome Aggregation Consortium, or ExAC), has been working with geneticists around the world to compile and study more than 125,000 exomes and 15,000 whole genomes from populations around the world.

Individual genetic variation in immune system may affect severity of COVID-19
Genetic variability in the human immune system may affect susceptibility to, and severity of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19).

Genetic variation not an obstacle to gene drive strategy to control mosquitoes
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 'gene drive' technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.

Genetic variation gives mussels a chance to adapt to climate change
Existing genetic variation in natural populations of Mediterranean mussels allows them to adapt to declining pH levels in seawater caused by carbon emissions.

A genetic tug-of-war between the sexes begets variation
In species with sexual reproduction, no two individuals are alike and scientists have long struggled to understand why there is so much genetic variation.

Scientists identify genetic variation linked to severity of ALS
A discovery made several years ago in a lab researching asthma at Wake Forest School of Medicine may now have implications for the treatment of amyotrophic lateral sclerosis (ALS), a disease with no known cure and only two FDA-approved drugs to treat its progression and severity.

Genetic variation contributes to individual differences in pleasure
Differences in how our brains respond when we're anticipating a financial reward are due, in part, to genetic differences, according to research with identical and fraternal twins published in Psychological Science, a journal of the Association for Psychological Science.

Read More: Genetic Variation News and Genetic Variation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.