Decoding the fundamental mechanisms of human salivary lubrication

November 21, 2019

An interdisciplinary team of scientists led by the University of Leeds have uncovered the fundamental mechanism by which human saliva lubricates our mouth. Their multi-scale study opens the door to advancing dry mouth therapies and saliva substitutes - potentially bringing relief to people who suffer from dry mouth, which can affect swallowing, speech, nutritional intake and quality of life.

Roughly 10% of the general population and 30% of older people suffer from dry mouth, which can be caused by prescribed polymedication, certain cancer treatments and autoimmune diseases.

Previously, the molecular mechanisms that govern saliva's lubrication properties have not been well understood. This has caused significant challenges in developing effective and long-lasting treatments or therapies for dry mouth.

Now, new research harnessing expertise in food colloid science, mechanical engineering, nanoscience and chemical engineering has demonstrated for the first time that the high lubrication properties of saliva is a result of electrostatic self-assembly between mucin proteins and positively charged non-mucinous small-molecular proteins.

The study, published in the journal Advanced Materials Interfaces, puts forward an unprecedented molecular model that explains the synergistic lubrication behaviour of human salivary proteins from macro to nanoscale.

Study lead author, Dr Anwesha Sarkar from the School of Food Science and Nutrition at Leeds, said: "Human salivary lubrication underpins the fundamentals of human feeding and speech. Oral lubrication is crucial not only to one's daily life functioning but also to one's general health and wellbeing. However, until now the molecular mechanism behind salivary lubrication properties has remained elusive.

"Our research resolves the distinct roles played by mucin- and non-mucinous molecular proteins. We found that that hydrated mucin controls the macromolecular viscous lubrication, forming a mesh-like nano-reservoir that traps water molecules. Non-mucinous small molecular positively-charged proteins on the other hand act as a molecular bridge between mucin-mucin and mucin-surface within that mesh, aiding boundary lubrication.

"We believe that this work is an important stepping-stone to designing the next-generation of nature-inspired aqueous lubricants for nutritional technologies and biomedical applications."
-end-
The paper A self-assembled binary protein model explains high-performance salivary lubrication from macro to nanoscale is published 20 November 2019 in Advanced Materials Interfaces (DOI: 10.1002/admi.201901549)

This research was funded by the European Research Council (ERC) Project LubSat.

Further information:

Full list of paper authors: Feng Xu, Evangelos Liamas, Michael Bryant, Abimbola Feyisara Adedeji, Efren Andablo-Reyes, Matteo Castronovo, Rammile Ettelaie, Thibaut V. J. Charpentier,, Anwesha Sarkar

For additional information, contact University of Leeds press officer Anna Harrison via a.harrison@leeds.ac.uk or +44 (0)113 34 34196.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK, with more than 38,000 students from more than 150 different countries, and a member of the Russell Group of research-intensive universities. The University plays a significant role in the Turing, Rosalind Franklin and Royce Institutes.

We are a top ten university for research and impact power in the UK, according to the 2014 Research Excellence Framework, and are in the top 100 of the QS World University Rankings 2020.

The University was awarded a Gold rating by the Government's Teaching Excellence Framework in 2017, recognising its 'consistently outstanding' teaching and learning provision. Twenty-six of our academics have been awarded National Teaching Fellowships - more than any other institution in England, Northern Ireland and Wales - reflecting the excellence of our teaching. http://www.leeds.ac.uk

Follow University of Leeds or tag us in to coverage: Twitter Facebook LinkedIn Instagram

University of Leeds

Related Speech Articles from Brightsurf:

How speech propels pathogens
Speech and singing spread saliva droplets, a phenomenon that has attracted much attention in the current context of the Covid-19 pandemic.

How everyday speech could transmit viral droplets
High-speed imaging of an individual producing common speech sounds shows that the sudden burst of airflow produced from the articulation of consonants like /p/ or /b/ carry salivary and mucus droplets for at least a meter in front of a speaker.

Speech processing hierarchy in the dog brain
Dog brains, just as human brains, process speech hierarchically: intonations at lower, word meanings at higher stages, according to a new study by Hungarian researchers.

Computational model decodes speech by predicting it
UNIGE scientists developed a neuro-computer model which helps explain how the brain identifies syllables in natural speech.

Variability in natural speech is challenging for the dyslexic brain
A new study brings neural-level evidence that the continuous variation in natural speech makes the discrimination of phonemes challenging for adults suffering from developmental reading-deficit dyslexia.

How the brain controls our speech
Speaking requires both sides of the brain. Each hemisphere takes over a part of the complex task of forming sounds, modulating the voice and monitoring what has been said.

How important is speech in transmitting coronavirus?
Normal speech by individuals who are asymptomatic but infected with coronavirus may produce enough aerosolized particles to transmit the infection, according to aerosol scientists at UC Davis.

Using a cappella to explain speech and music specialization
Speech and music are two fundamentally human activities that are decoded in different brain hemispheres.

Speech could be older than we thought
The theory of the 'descended larynx' has stated that before speech can emerge, the larynx must be in a low position to produce differentiated vowels.

How the brain detects the rhythms of speech
Neuroscientists at UC San Francisco have discovered how the listening brain scans speech to break it down into syllables.

Read More: Speech News and Speech Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.