Non-coding DNA located outside chromosomes may help drive glioblastoma

November 21, 2019

One of the ways a cancer-causing gene works up enough power to turn a normal cell into a cancer cell is by copying itself over and over, like a Xerox machine. Scientists have long noticed that when cancer-causing genes do that, they also scoop up some extra DNA into their copies. But it has remained unclear whether the additional DNA helps drive cancer or is just along for the ride.

Using human glioblastoma brain tumor samples, researchers at University of California San Diego School of Medicine and Case Western Reserve University School of Medicine have now determined that all of that extra DNA is critical for maintaining a cancer-causing gene's activation, and ultimately supporting a cancer cell's ability to survive. Comparing those findings to a public database of patient tumor genetics, they also discovered that even if two different tumor types are driven by the same cancer-causing gene, the extra DNA may differ.

The study, published November 21, 2019 in Cell, could explain why drugs will often work for some cancer types but not others.

"We've been targeting the cancer-causing gene for therapy, but it turns out we should also think about targeting the switches that are carried along with it," said co-senior author Peter Scacheri, PhD, Gertrude Donnelly Hess Professor of Oncology at Case Western Reserve University School of Medicine and member of the Case Comprehensive Cancer Center.

When the human genome was first fully sequenced, many people were surprised to find it contained far fewer genes -- segments of DNA that encode proteins -- than expected. It turns out that the remainder of human DNA in the genome, the non-coding regions, play important roles in regulating and enhancing the protein-coding genes -- turning them "on" and "off," for example.

In this study, the researchers focused on one example cancer-causing gene, EGFR, which is particularly active in glioblastoma, an aggressive form of brain cancer, and other cancers. When copies of EGFR pile up in tumors, they tend to be in the form of circular DNA, separate from the chromosome.

"In 2004, I was the lead on the first clinical trial to test a small molecule inhibitor of EGFR in glioblastoma," said co-senior author Jeremy Rich, MD, professor of medicine at UC San Diego School of Medicine and director of neuro-oncology and director of the Brain Tumor Institute at UC San Diego Health. "But it didn't work. And here we are 15 years later, still trying to understand why brain tumors don't respond to inhibitors of what seems to be one of the most important genes to make this cancer grow."

The team took a closer look at the extra DNA surrounding EGFR circles in 9 of 44 different glioblastoma tumor samples donated by patients undergoing surgery. They discovered that the circles contained as many as 20 to 50 enhancers and other regulatory elements. Some of the regulatory elements had been adjacent to EGFR in the genome, but others were pulled in from other regions of the genome.

To determine the role each regulatory element plays, the researchers silenced them one at a time. They concluded that nearly every single regulatory element contributed to tumor growth.

"It looks like the cancer-causing gene grabs as many switches it can get its hands on ... co-opting their normal activity to maximize its own expression," Scacheri said.

First author Andrew Morton, a graduate student in Scacheri's lab, then searched a public database of patient tumor genetic information -- more than 4,500 records covering nine different cancer types. He found that the team's observation was not limited to EGFR and glioblastoma. Enhancers were amplified alongside cancer-causing genes in many tumors, most notably the MYC gene in medulloblastoma and MYCN in neuroblastoma and Wilms tumors.

"People thought that the high copy number alone explained the high activity levels of cancer-causing genes, but that's because people weren't really looking at the enhancers," Morton said. "The field has been really gene-centric up to this point, and now we're taking a broader view."

Next, the researchers want to know if the diversity in regulatory elements across cancer types could also be helping tumors evolve and resist chemotherapy. They also hope to find a class of therapeutic drugs that inhibit these regulatory elements, providing another way to put the brakes on cancer-causing genes.

"This isn't just a laboratory phenomenon, it's information I need to better treat my patients," said Rich, who is also a faculty member in the Sanford Consortium for Regenerative Medicine and Sanford Stem Cell Clinical Center at UC San Diego Health.
-end-
Additional study co-authors include: Nergiz Dogan-Artun, Princess Margaret Cancer Centre, University Health Network; Zachary J. Faber, Cynthia F. Bartels, Kevin C. Allan, Case Western Reserve University; Graham MacLeod, Stephane Angers, University of Toronto; Megan S. Piazza, Shashirekha Shetty, University Hospitals, Cleveland; Stephen C. Mack, Baylor College of Medicine; Xiuxing Wang, Qiulian Wu, UC San Diego; Ryan C. Gimple, UC San Diego and Case Western Reserve University; Brian P. Rubin, Cleveland Clinic; Peter B. Dirks, The Hospital for Sick Children, Ontario Institute for Cancer Research; Richard C. Sallari, Axiotl, Inc.; Mathieu Lupien, Princess Margaret Cancer Centre, University Health Network, Ontario Institute for Cancer Research, University of Toronto.

University of California - San Diego

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.