Nav: Home

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits

November 21, 2019

The brain cortex, the outside layer of our brain often referred to as grey matter, is one of the most complex structures found in living organisms. It gives us the advanced cognitive abilities that distinguish us from other animals.

Neuroscientist Prof. Pierre Vanderhaeghen (VIB-KU Leuven, Université libre de Bruxelles) explains what makes the human brain so unique: "One remarkable feature of human neurons is their unusually long development. Neural circuits take years to reach full maturity in humans, but only a few weeks in mice or some months in monkeys."

"This long period of maturation allows much more time for the modulation of brain cells and circuits, which allows us to learn efficiently for an extended period up until late adolescence. It's a very important and unique feature for our species, but what lies at its origin remains a mystery."

Understanding the mechanisms underlying brain circuit formation is important, for example if we want to treat brain disease, adds Prof. Vincent Bonin of Neuro-Electronics Research Flanders (NERF, empowered by imec, KU Leuven and VIB): "Disturbances of circuit development have been linked to intellectual disability, for example, and to psychiatric diseases such as schizophrenia. However, it has remained impossible to study human neural circuits in action in great detail - until now!"

Human brain cells in a mouse brain:

In a joint research effort, the teams of Vanderhaegen and Bonin developed a novel strategy to transplant human neurons as individual cells into the mouse brain and to follow their development over time.

Dr. Daniele Linaro: "We differentiated human embryonic stem cells into neurons and injected them into the brains of young mouse pups. This allows us to investigate human neurons in a living brain over many months. We can also apply a whole range of biological tools in these cells to study human neural circuit formation and human brain diseases."

The researchers discovered that the transplanted human cells follow the same developmental plan as they would in a human brain, with a months-long period of maturation typical for human neurons. This means that our nerve cells may follow an 'internal clock' of development that is surprisingly independent of the surrounding environment.

Moreover, the human cells were able to function in the mouse neural circuits. "After months of maturation, the human neurons began to process information, for example responding to visual inputs from the environment," says Dr. Ben Vermaercke, who conducted the experiments together with Linaro. "The human cells even showed different responses depending on the type of stimulus, indicating a surprisingly high degree of precision in the connections between the transplanted cells and the host mouse's brain circuits."

A milestone with a lot of potential:

This study constitutes the first demonstration of genuine circuit integration of neurons derived from human pluripotent stem cells. According to Bonin, "it's a technological milestone that opens up exciting possibilities to study how genetic information, environmental cues and behavior together shape how the brain wires itself up".

On the one hand, this model could be applied to study a whole range of diseases that are thought to impact the development of human neurons into neural circuits. The researchers plan to use neurons with genetic mutations linked to diseases such as intellectual disability to try and understand what goes wrong during maturation and circuit formation.

"Our findings also imply that nerve cells retain their 'juvenile' properties even in an adult (mouse) brain. This could have potentially important implications for neural repair," adds Vanderhaeghen. "The fact that transplanted young human neurons can integrate into adult circuits is promising news in terms of treatment development for neurodegeneration or stroke, where lost neurons could potentially be replaced by transplanting new neurons."
-end-


Université libre de Bruxelles

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.