Chemists create new route to PHAs: naturally degradable bioplastics

November 21, 2019

A tide of public momentum is swelling against the crisis of petroleum-based plastics, which are sitting in our landfills, floating in our oceans, and showing up in our air and even our food.

Meanwhile, in a Colorado State University chemistry laboratory, polymer scientists are toiling toward what they think is a viable solution. Every day, they are working on new chemistry for sustainable materials that could compete with, and eventually even replace, the hard-to-recycle, non-degradable commodity plastics that have overwhelmed our environment for decades.

Eugene Chen, professor in the Department of Chemistry, has led a new study demonstrating a chemical catalysis path for making an existing class of biomaterials - already gaining momentum in industrial settings - even more commercially viable and structurally diverse. The results are published in the journal Science, and the paper includes first author Xiaoyan Tang and graduate student co-authors Andrea Westlie and Eli Watson.

In recent years, Chen has focused some of his lab's efforts on a set of biomaterials called PHAs, or polyhydroxyalkanoates. They're a class of polyesters, produced by bacteria, that are biodegradable to a degree not seen in commercial plastics. They beat out "compostable" bioplastics made out of polylactic acid (PLA) by degrading naturally in oceans and landfills, whereas PLA needs to be composted industrially. Some see PHAs as a beacon in a dark, plastics-filled world, with companies already trying to create an industry around such bio-based materials.

But PHAs have their limitations. They are made in bioreactors where communities of bacteria convert biorenewable carbon feedstocks, such as sugars, into the simplest form of PHA, called poly(3-hydroxybutyrate), or P3HB. Different carbon sources and bacteria can also make other PHA derivatives. These biosynthesis setups are currently expensive, relatively slow and hampered by their limited scalability and productivity.

In their Science paper, Chen and colleagues attack those limitations one by one, offering a novel, chemical synthetic pathway for making conventional and new PHAs with enhanced, tunable, mechanical and physical properties. These are the very characteristics that made petroleum plastics so ubiquitous in our world.

The CSU polymer chemists report that their new polymerization methodology is enabled by catalysts that directly polymerize a bio-sourced monomer called 8DL that exists in a form called stereo-isomers. The catalyzed polymerization produces orderly, crystalline, so-called "stereosequenced" PHAs. In the lab, the researchers showed their materials' ductility and toughness, and their ability to tune the structure and function of their materials.

"We wanted to solve the bottleneck issue," Chen said. "How can we develop the chemical catalysis pathway to this fantastic class of biodegradable plastics so that you have, basically, scalability, fast production and tunability to make different PHAs? ... That was the motivation."

This work built on previously published research that appeared in Nature Communications. Then, the researchers used their chemical synthesis pathway to make P3HB, one of 150 PHA biomaterials. But P3HB is relatively brittle, making it impractical for many petroleum plastics applications of today.

Chen stresses that he is not an expert in biosynthetic pathways for making PHAs. However, his lab is offering the technologically advantageous chemical catalysis approach to both existing and new PHA materials - which could play a big role in solving the plastics crisis of our generation.
-end-
Link to paper: https://science.sciencemag.org/content/366/6466/754

Colorado State University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.