Genetic studies reveal how rat lungworm evolves

November 21, 2019

Rat lungworm is a parasitic disease, spread through contaminated food, which affects the brain and spinal cord. Now, researchers report in PLOS Neglected Tropical Diseases that a detail analysis of the genetics of the rat lungworm parasite-- Angiostrongylus cantonensis-- reveal signatures of adaptive evolution that have let the parasite survive and may serve as future drug targets.

A. cantonensis is a roundworm with a complicated lifecycle that requires snails or slugs as an intermediary host. The parasite leads to central nervous system angiostrongyliasis in humans after ingestion of larvae in raw or undercooked snails or contaminated water or vegetables. The worm is the most common causes of eosinophilic meningitis in humans, an infection that can lead to death or permanent nervous system damage.

In the new work, Zhongdao Wu, of Sun Yat-sen University, China, and colleagues performed high-quality genetic sequencing of a well-defined laboratory strain of A. cantonensis. They isolated DNA and RNA from multiple stages of larvae and mature adult worms. They also compared the sequences to seven other nematode genomes that had been previously sequenced.

The researchers discovered that transposable elements make up 54.61% of the genome, more than in any other parasitic nematode. The expansion of retrotransposons and genes related to antioxidants, invasion, migration and digestion suggested adaptive evolution in these areas. There was also evidence of convergent evolution of extracellular superoxide dismutase (EC-SOD) in A. cantonensis and flukes, which both require snails as hosts.

"These results provide an abundant data resource to study the biology and evolution of A. cantonensis and showed some potential targets against A. cantonensis and helminths with similar traits," the researchers say.
-end-
In your coverage please use this URL to provide access to the freely available paper: http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd. 0007846

Citation: Xu L, Xu M, Sun X, Xu J, Zeng X, et al. (2019) The genetic basis of adaptive evolution in parasitic environment from the Angiostrongylus cantonensis genome. PLOS Neglected Tropical Diseases 13(11): e0007846. https://doi.org/10.1371/journal.pntd.0007846

Funding: ZD-W received grants from National Research and Development Plan of China (2016YFC1200500), the Major Basic Research of Ministry of Science and Technology of China (973 Project) (No.2010CB530000), National Natural Science Foundation of China (No.81261160324, No.81271855, and No.81371836), Science and Technology Planning Project of Guangdong Province (No.2016A050502008), Natural Science Foundation of Guangdong Province, China (No. 2015A030310058) and the 111 Project (Grant No. B12003). ZY-L received a grant from National Natural Science Foundation of China (No. 81572023) and Science and Technology Planning Project of Guangdong Province (2019B030316025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.