Nav: Home

What leads to compulsive alcohol use? New experiments into binge drinking provide answers

November 21, 2019

Occasional binge drinking isn't uncommon, but about 30 percent of all adults exposed to alcohol go on to engage in compulsive drinking behaviors despite negative effects and consequences - a major feature of alcohol use disorder.

For years, researchers have sought answers as to why alcohol produces such radically different outcomes for drinkers - how is it that some individuals can drink for their entire adult life without developing compulsive habits, while others transition quickly to problem drinking?

Now, a new study from neuroscientists at Vanderbilt and The Salk Institute is providing initial answers to those long-standing scientific questions and a new method for researching what causes this transition from moderate to compulsive alcohol consumption.

The paper appears this week in Science.

"In our lab, we're focused on the neuroscience of addiction and understanding how neural activity patterns give rise to compulsive drug and alcohol use," said Cody Siciliano, assistant professor of pharmacology and author on the study. "In this study, we initially sought to understand how the brain is altered by binge drinking to drive compulsive alcohol consumption. In the process, we stumbled across a surprising finding where we were actually able to predict which subjects would become compulsive based on neural activity during the very first time they drank."

Using a behavioral model in mice, the team presents findings showing that even when subjects are given the same opportunity to drink, they split into distinct categories based on characteristics: light, heavy and compulsive binge drinkers (that is, those that continued to drink despite it resulting in a negative outcome).

The team began by recreating a drinking scenario (called a "binge-induced compulsion task") to assess how predisposition interacts with experience to produce compulsive drinking. They tracked compulsive alcohol drinking during these first drinking experiences, and again at later timepoints.

Using cellular-resolution calcium imaging and miniature microscopes, the researchers tracked the luminescence of the activity in neurons during the very first time the subjects drank alcohol. The brighter and more active the neurons became, the less likely the subject would be to go on to develop compulsive drinking behaviors. In contrast, the neurons in drinkers predisposed for compulsive behavior quieted and decreased activity during drinking events.

Interestingly, the differences in neural activity were observed during the very first drinking experience, well before compulsive behaviors emerged, allowing researchers to predict ahead of time which subjects would go on to display problem drinking behaviors.

As a result, the findings helped construct a novel behavioral model, and the team identified the specific cortical-brainstem circuit that serves as both a biomarker and a cellular platform for the eventual development of compulsive drinking behavior.

According to Siciliano, the biomarker and platform findings not only have implications on the future of alcohol addiction studies - but on other substance abuse studies, as well.

"We developed this model to study the path to alcohol use disorder, but we plan to apply a similar framework to advance our understanding of compulsive use of other substances."
-end-
The research was supported by the National Institutes of Health (F32 MH111216 and RO1-MH102441), the National Institute on Drug Abuse (K99 DA045103), the JPB Foundation, New York Stem Cell Foundation, the NIH Director's New Innovator Award (DP2-DK102256) and Pioneer Award (DP1-AT009925).

Vanderbilt University

Related Neurons Articles:

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.