Brain Mapping In Real Time

November 21, 1996

Magnetic-Resonance Imaging Linked With Supercomputing Produces a 3-D Picture of Brain Activity Within Minutes.

PITTSBURGH -- Scientists at Pittsburgh Supercomputing Center, Carnegie Mellon University and the University of Pittsburgh Medical Center have teamed up to create a new capability for viewing the brain during mental activity. By linking an MRI scanner with the CRAY T3E supercomputing system, scan data from a subject's brain can be processed faster than the scanner scans, making it possible to see a realistic 3-D image of the brain while the subject is in the scanner. The researchers demonstrated this capability yesterday at Supercomputing '96, the annual supercomputing conference, held this year in Pittsburgh.

"With the T3E, we have enough computing power to stay ahead of the scanner," said PSC neural scientist Nigel Goddard. "The same processing that used to take more than a day on workstations we can now do in minutes."

"This is a big step forward," said Dr. Jonathan Cohen, codirector of the Laboratory for Clinical Cognitive Neuroscience, a joint venture of the University of Pittsburgh and Carnegie Mellon University. "The CRAY T3E eliminates the data bottleneck in this research. Ultimately, this on-line capability will make it possible to use brain-mapping as a clinical tool in diagnosis and treatment of brain pathology."

Using a technique known as functional MRI (fMRI), Cohen and his colleagues do "brain-mapping" experiments that produce high- resolution images showing what brain sites are active during different kinds of mental activity. fMRI generates a great deal of information quickly (half a gigabyte or more per experiment). In the past, computing couldn't keep up with the data, and it took 24 hours or more to produce a usable image.

To deal with this bottleneck, the researchers turned to PSC. CMU statistician William Eddy and UPMC physicist Doug Noll worked with Goddard and PSC research programmer Greg Hood to integrate and "parallelize" the software operations. This allowed them to effectively use the CRAY T3E, a "highly parallel" computing system in which hundreds of processors team up to divide the computing.

During yesterday's demonstration, a volunteer subject in an MRI scanner at the University of Pittsburgh Medical Center observed a whirling visual pattern. After about three minutes, the scanner sent data over a high-speed network to 128 processors of the CRAY T3E at PSC's machine room in Monroeville, Pa., which sent it back in about two minutes as a 3-D realistic picture of the subject's brain -- visualized on the convention floor with an SGI Onyx Reality Engine -- showing what areas "lit up" while the subject looked at the whirling pattern.

The next step, said the researchers, is to send data from the scanner to the T3E in shorter bursts, of from six to ten seconds, making it possible to produce a 3-D image almost instantaneously. This capability, said Goddard, eventually will lead to using fMRI brain-mapping clinically, such as in planning for precision neurosurgery to treat cognitive dysfunctions mapped to a specific brain site.


More information (and graphics) about this research is available on World Wide Web:

The Pittsburgh Supercomputing Center, a joint effort of Carnegie Mellon University and the University of Pittsburgh together with Westinghouse Electric Corp., was established in 1986 by a grant from the National Science Foundation, with support from the Commonwealth of Pennsylvania.

Pittsburgh Supercomputing Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to