New type of serotonin receptor identified

November 22, 2000



November 23, 2000
–Researchers studying the roundworm Caenorhabditis elegans have identified a new type of serotonin receptor. If this type of receptor is found in humans, it may become an additional target for drugs designed to treat a wide range of disorders caused by serotonin imbalance, including mood disorders, migraine headaches and obesity.

The identification of the new serotonin receptor began with experiments designed to probe why certain strains of the roundworm, Caenorhabditis elegans, fail to slow down when they encounter food. When well-fed worms are presented with food, their rate of locomotion slows in what scientists call the "basal slowing response." In contrast, worms that have been deprived of food for 30 minutes before encountering food exhibit an "enhanced slowing response." In an article published in the November 23, 2000, issue of the journal Nature, Howard Hughes Medical Institute (HHMI) investigator H. Robert Horvitz and colleagues at the Massachusetts Institute of Technology (MIT) report that they have isolated one of the genes responsible for the enhanced slowing response.

Earlier this year, Horvitz and his colleagues, including former MIT graduate student Elizabeth R. Sawin, identified 17 worm strains that showed a defective enhanced slowing response. Extending this work, graduate student Rajesh Ranganathan, an HHMI predoctoral fellow and lead author of the Nature paper, sought to identify one key gene responsible for controlling the enhanced slowing response. Ranganathan and his colleagues isolated the mod-1 gene and showed that it encoded a serotonin receptor–a cell membrane protein that binds to the neurotransmitter serotonin.

"Although we had evidence that serotonin is involved in the enhanced slowing response," said Ranganathan, "we did not expect the mod-1 protein to represent an entirely new kind of serotonin receptor." There are two basic types of serotonin receptor, those that trigger fast responses in neurons and those that trigger slow responses. While the "slow" receptors can either excite or inhibit the firing of neurons, the "fast" receptors discovered to date can only excite neurons.

"With the identification of the mod-1 protein, we have discovered the first fast serotonin receptor that can lead to inhibition," said Ranganathan. "This was quite surprising, since in mammals there are six types of the slow serotonin receptor, but only one subtype of the fast receptor."

Additional understanding of the serotonin receptor's properties came in experiments carried out in collaboration with Stephen C. Cannon of Harvard Medical School. The investigators inserted mod-1 RNA into frog eggs, which then expressed the MOD-1 protein in the cell membrane. The scientists conducted electrical and chemical studies on these altered frog eggs to determine the function of the receptor. They discovered that the receptor acts as a selective ion channel that opens to allow the influx of chloride ions. Negatively charged chloride ions alter the electrical properties of neurons, making them more refractory to excitation that would trigger transmission of a nerve signal.

According to Horvitz, many questions remain for future studies, not the least of which is determining whether such a receptor exists in mammals. "The sequence of the MOD-1 receptor protein looks quite different from the fast serotonin receptors known to exist in humans," he said. "However, the discovery that C. elegans has a fast serotonin receptor that is likely to be inhibitory raises the possibility that a receptor with such properties will likely be found in mammals."

Howard Hughes Medical Institute

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.