This is your fly's brain on drugs

November 22, 2004

Cocaine addiction wreaks profound changes on the brain, hijacking reward circuits and depressing inhibitory loops to the point that drug seeking and taking become central drivers of behavior. While mammalian models are useful for mapping out the neural complexity of these behaviors, insights into the molecular basis of drug abuse can often be garnered from simple models, such as the fruitfly, Drosophila. In the open-access journal PLoS Biology, Ulrike Heberlein and colleagues describe their discovery of a new gene that modulates sensitivity to cocaine within the cells of the fruitfly's internal clock. They further show that the cells' role in regulating cocaine sensitivity is distinct from its function as a timekeeper.

One known effect of cocaine on Drosophila is loss of "negative geotaxis," or wall climbing, in response to startle. Using this behavior to screen 400 different mutants, the researchers identified seven with an increased response to cocaine, and for two of these, the disrupted gene was the same, Lmo.

While Lmo is found throughout the body, it is enriched in the brain, and its cocaine-related effects appear to localize in the ventral lateral neurons (LNvs), which provide the fly with an internal clock, driving circadian activities even in the absence of light. However, it appears that these neurons modulate cocaine sensitivity independently of their role in controlling circadian rhythms.

Because Lmo-related proteins are found in key areas of mammalian brains, these results may have important implications for understanding innate differences in sensitivity to cocaine in humans, and potentially provide targets for development of drugs to treat or prevent addiction.
-end-
Citation: Tsai L, Bainton R, Blau J, Heberlein U (2004) Lmo Mutants Reveal a Novel Role for Circadian Pacemaker Neurons in Cocaine-Induced Behaviors. PLoS Biol 2 (12): e408.

Contact: Ulrike Heberlein
University of California, San Francisco
1550 4th Street, Room 445
San Francisco, CA 94143-2822
1-415-502-1717
ulrike@itsa.ucsf.edu

PLEASE MENTION PLoS BIOLOGY (www.plosbiology.org) AS THE SOURCE FOR THIS ARTICLE. THANK YOU.

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

PLOS

Related Cocaine Articles from Brightsurf:

Sleep-deprived mice find cocaine more rewarding
Sleep deprivation may pave the way to cocaine addiction. Too-little sleep can increase the rewarding properties of cocaine, according to new research in mice published in eNeuro.

Nucleus accumbens recruited by cocaine, sugar are different
In a study using genetically modified mice, a University of Wyoming faculty member found that the nucleus accumbens recruited by cocaine use are largely distinct from nucleus accumbens recruited by sucrose, or table sugar.

Astrocytes build synapses after cocaine use in mice
Drugs of abuse, like cocaine, are so addictive due in part to their cellular interaction, creating strong cellular memories in the brain that promote compulsive behaviors.

Of all professions, construction workers most likely to use opioids and cocaine
Construction workers are more likely to use drugs than workers in other professions, finds a study by the Center for Drug Use and HIV/HCV Research (CDUHR) at NYU College of Global Public Health.

Chronic cocaine use modifies gene expression
Chronic cocaine use changes gene expression in the hippocampus, according to research in mice recently published in JNeurosci.

Blocking dopamine weakens effects of cocaine
Blocking dopamine receptors in different regions of the amygdala reduces drug seeking and taking behavior with varying longevity, according to research in rats published in eNeuro.

Born to run: just not on cocaine
A study finds a surprising response to cocaine in a novel strain of mutant mice -- they failed to show hyperactivity seen in normal mice when given cocaine and didn't run around.

Cocaine adulterant may cause brain damage
People who regularly take cocaine cut with the animal anti-worming agent levamisole demonstrate impaired cognitive performance and a thinned prefrontal cortex.

Setting affects pleasure of heroin and cocaine
Drug users show substance-specific differences in the rewarding effects of heroin versus cocaine depending on where they use the drugs, according to a study published in JNeurosci.

One in 10 people have traces of cocaine or heroin on their fingerprints
Scientists have found that drugs are now so prevalent that 13 percent of those taking part in a test were found to have traces of class A drugs on their fingerprints -- despite never using them.

Read More: Cocaine News and Cocaine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.