AKT cancer cell pathway demonstrates unexpected function

November 22, 2005

BOSTON - In investigating the molecular mechanisms of cancer cell motility - the unique property that enables cancer to spread from its primary origin to other parts of the body - researchers have uncovered a surprising role for the AKT/PKB (protein kinase B) enzyme, providing important new insights into cancer metastasis and suggesting that current efforts to develop cancer therapies by inhibiting AKT may be inadvertently promoting the spread of the disease.

Led by a scientific team at Beth Israel Deaconess Medical Center (BIDMC) and described in a study in the Nov. 23 issue of the medical journal Molecular Cell, the research demonstrates for the first time that AKT, which is known to increase cancer cells' survival capability also paradoxically blocks their motility and invasion abilities, thereby preventing cancer from spreading.

"The aggressive behavior of malignant cancer cells is determined by a complex array of signaling pathways that regulate key functions including cell proliferation, survival capacity, and the ability to migrate from their original location and invade other regions of the body," explains the study's senior author Alex Toker, Ph.D., a member of the department of pathology at BIDMC and associate professor of medicine at Harvard Medical School.

In the 1990s AKT, a component of the phosphoinositide 3-kinase (PI3K) signaling pathway, was first found to promote cancer cells' survival capacity, and since then the enzyme has also been shown to control cell proliferation.

"In essence, cancer cells have highjacked this enzyme and its regulatory proteins in order to increase their ability to survive," explains Toker. "By blocking the pathway - and thereby causing cell death -- AKT has become a popular target in the development of cancer inhibitor drugs."

Although cell migration is an essential feature of the invasive phenotype of cancer cells, relatively little information has been available on AKT's role in this key function. As a result, the discovery that this kinase actually blocks cancer cell motility and invasion was totally unexpected. "We asked ourselves, 'how is this happening?'"says Toker.

The answer, he explains, may lie in a discovery made in his laboratory in 2002, when a transcription factor known as NFAT was identified in aggressive carcinomas of the breast and colon. (Until that point, NFAT was primarily known for its role in providing the body's immune system with a line of defense against infection.)

"Our new findings suggest that it is an NFAT-dependent mechanism that is allowing AKT to block cancer cell motility and subsequent invasion," explains Toker. "Earlier animal studies have shown that although tumors are more likely to develop in the mammary tissue of mice expressing excessive AKT, these animals actually develop fewer metastatic lesions than do control mice. Taken together with our new findings, these results suggest that by inhibiting AKT, not only do you block cancer survival, you also increase cells' properties of motility and invasiveness."

In other words, he says, while a majority of cancer cells will die, those that are able to escape death will be left with a far stronger ability to metastasize and spread to other parts of the body.

"This paper is important because it shows that a pathway known to be involved in initiating breast cancer, the PI3K/AKT pathway, also plays a paradoxical role in suppressing the ability of the tumor to invade new tissues," says Lewis Cantley, PhD, director of the division of signal transduction at BIDMC and professor of systems biology at HMS, in whose laboratory the PI3K pathway was first discovered. "This new discovery suggests that tumors that result from activation of the PI3K/AKT pathway are unlikely to be metastatic unless another mutation occurs to circumvent the block on invasion. The results also suggest that the status of the NFAT pathway that is implicated in invasion should be evaluated in breast tumors."

The study also points out the extremely complex nature of cancer cell pathways.

"We now know that AKT has very different - even competing - functions in its dual roles as both a survival kinase and a motility kinase," says Toker. "In terms of developing future therapies, this poses a host of new questions and challenges and above all, indicates that much more work is needed to arrive at a comprehensive picture of the role of AKT in cancer before it can be targeted for therapeutic purposes."

Study coauthors include BIDMC investigators Merav Yoeli-Lerner, PhD, Gary K. Yiu, PhD, and Isaac Rabinovitz, PhD; Peter Erhardt, PhD, of the Boston Biomedical Research Institute; and Sebastien Jauliac, Ph.D., of Hopital Saint-Louis, Paris, France.
-end-
This study was supported, in part, by grants from the National Institutes of Health.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School, and ranks fourth in National Institutes of Health funding among independent hospitals nationwide. BIDMC is clinically affiliated with the Joslin Diabetes Center and is a research partner of Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit www.bidmc.harvard.edu.

Beth Israel Deaconess Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.