UIC chemists characterize Alzheimer's plaque precursor

November 22, 2005

Using a nuclear magnetic resonance technique, University of Illinois at Chicago chemists have obtained the first molecular-level images of precursors of bundled fibrils that form the brain plaques seen in Alzheimer's disease.

Untangling the molecular structure of these pre-fibril forms, which may be the key neurotoxins in Alzheimer's, may help identify targets for new drugs to combat many neurodegenerative diseases.

Microscopic bundled fibrils made of proteins called amyloid-beta are presumed to be the toxic culprits in the senile plaques found in the brain with Alzheimer's. But there is increasing evidence that even smaller assemblies of amyloid-beta found prior to formation of pre-fibrils are the real nerve-killers. Scientists have been frustrated that electron microscope images of these nanometer-scale spherical assemblies have failed to reveal any distinct molecular structure.

Yoshitaka Ishii, assistant professor of chemistry at UIC, and graduate student Sandra Chimon have now determined this structure using a methodology developed with high-resolution solid-state nuclear magnetic resonance, or SSNMR. Details were reported in a Communication article last month in JACS, the Journal of the American Chemical Society.

"This is the first case showing that these intermediate species, the smaller assemblies, have a well-defined structure," said Ishii, who conducted a two-year search to map the structure of the pre-fibril assemblies, then spent another year confirming his findings.

Ishii's technique uses what is called time-resolution SSNMR to view nanoscale spectral images of this chemical formation.

Thioflavin, a dye commonly used to stain amyloid senile plaques, is applied to detect formation of the intermediate assemblies in florescence. The intermediate sample is then frozen to capture quickly changing spectral images of the molecules before they can self-assemble into fibril-forming sheets.

The resulting SSNMR "snapshots" provide a structural diagram for finding molecular binding targets that may stop proteins from misfolding, which may stop Alzheimer's disease from developing.

"We're interested in how the molecules assemble in this shape, and eventually into fibrils," Ishii said. "We wanted to find out what kind of structure each amino acid takes in a certain site of a protein at the atomic level. It gives us an idea of how these molecules interact with each other to make this structure."

Ishii said the SSNMR technique may be used to study small chemical subunits involved in diseases such as Parkinson's and prion diseases like mad cow or Creutzfeld-Jacob, to name just some of the 20 or so neurodegenerative diseases characterized by misfolding proteins.

"You want to design molecules that will interact and prevent this," said Ishii. "That's been difficult. Now we have a new clue to learn how."
Ishii's research work was supported by the Alzheimer's Association and the National Science Foundation.

University of Illinois at Chicago

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.