New understanding about mechanism for cell death after stroke leads to possible therapy

November 22, 2009

Scientists at the Brain Research Centre, a partnership of the University of British Columbia Faculty of Medicine and Vancouver Coastal Health Research Institute, have uncovered new information about the mechanism by which brain cells die following a stroke, as well as a possible way to mitigate that damage. The results of the study were recently published online in Nature Medicine.

Following a stroke, many brain cells continue to die even after blood flow has been restored. Researchers have long known this is due to a complicated cascade of cellular messages that lead to the "self-destruction" and death of brain cells.

The team of Brain Research Centre scientists discovered that, in animal models, the over-activation of NMDA receptors--special receptors on the surface of brain cells--activates another protein, called SREBP-1, which subsequently causes cell death. SREBP-1 is found naturally in cells throughout the body and is involved with cholesterol and other fat production.

NMDA receptors control the movement of calcium in and out of brain cells, which is necessary for normal brain function. However, following a stroke, levels of glutamate--the most abundant chemical messenger in the brain--rise rapidly in cells, leading to over-activation of NMDA receptors, an excess of calcium entering cells, and the onset of cell death.

The researchers found that under normal conditions, SREBP-1 is largely kept in an inactive form by a protein known as Insig-1. After a stroke, over-activation of NMDA receptors leads to a rapid degradation of Insig-1, which increases the level of active form of SREBP-1.

"How over-activation of NMDA receptors caused cell death after a stroke has been a mystery," says Dr. Yu Tian Wang, co-lead on the study, a Professor in the UBC Division of Neurology, and the Heart and Stroke Foundation of BC & Yukon Chair in Stroke Research. "We found that SREBP-1 was one of the missing key players in that process."

While the detailed mechanisms by which activation of SREBP-1 leads to brain cell death remain to be established, the researchers discovered a way to inhibit SREBP-1 and thereby significantly reduce cell death.

"We developed a drug that can stabilize Insig-1, which in turn inhibits the activity of SREBP-1," says Dr. Max Cynader, co-lead on the study, a Canada Research Chair in Brain Development, and the Director of the Brain Research Centre. "By doing so, we were able to prevent cell death."

The researchers also found that the drug works post-stroke in animal models. "When we administered it post-stroke, there was less brain cell damage 30 days later than compared to controls," says Dr. Wang. "This is important because previous studies focused on blocking the NMDA receptors in order to prevent cell death, but this approach didn't work because it affected normal cell function and had a relatively short therapeutic window. The drug we studied works downstream of NMDA receptors and appears to have less detrimental side effects with a much improved therapeutic window."

Further investigations will help researchers understand how SREBP-1 causes cell death and to further determine efficacy of the drug. As well, because of the protein's connection to cholesterol synthesis and other cellular functions, further investigations may reveal if it has a role in other neurological disorders, such as ALS, and whether the drug might be effective for those conditions as well.
-end-
This study was funded by the Heart & Stroke Foundation of BC & Yukon, the Canadian Institutes of Health Research, and the Cure Huntington's Disease Initiative Foundation. Stroke is the third leading cause of death in Canada, and the leading cause of long-term adult disability.

The Brain Research Centre comprises more than 225 investigators with multidisciplinary expertise in neuroscience research ranging from the test tube, to the bedside, to industrial spin-offs. The Centre is a partnership of the UBC Faculty of Medicine and Vancouver Coastal Health Research Institute. www.brain.ubc.ca

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels, and generates more than $200 million in research funding each year. www.med.ubc.ca

Vancouver Coastal Health Research Institute (VCHRI) is the research body of Vancouver Coastal Health Authority, which includes BC's largest academic and teaching health sciences centres: VGH, UBC Hospital, and GF Strong Rehabilitation Centre. In academic partnership with the University of British Columbia, VCHRI brings innovation and discovery to patient care, advancing healthier lives in healthy communities across British Columbia, Canada, and beyond. www.vchri.ca

University of British Columbia

Related Stroke Articles from Brightsurf:

Stroke alarm clock may streamline and accelerate time-sensitive acute stroke care
An interactive, digital alarm clock may speed emergency stroke care, starting at hospital arrival and through each step of the time-sensitive treatment process.

Stroke patients with COVID-19 have increased inflammation, stroke severity and death
Stroke patients who also have COVID-19 showed increased systemic inflammation, a more serious stroke severity and a much higher rate of death, compared to stroke patients who did not have COVID-19, according a retrospective, observational, cross-sectional study of 60 ischemic stroke patients admitted to UAB Hospital between late March and early May 2020.

'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.

More stroke awareness, better eating habits may help reduce stroke risk for young adult African-Americans
Young African-Americans are experiencing higher rates of stroke because of health conditions such as high blood pressure, diabetes and obesity, yet their perception of their stroke risk is low.

How to help patients recover after a stroke
The existing approach to brain stimulation for rehabilitation after a stroke does not take into account the diversity of lesions and the individual characteristics of patients' brains.

Kids with headache after stroke might be at risk for another stroke
A new study has found a high incidence of headaches in pediatric stroke survivors and identified a possible association between post-stroke headache and stroke recurrence.

High stroke impact in low- and middle-income countries examined at 11th World Stroke Congress
Less wealthy countries struggle to meet greater need with far fewer resources.

Marijuana use might lead to higher risk of stroke, World Stroke Congress to be told
A five-year study of hospital statistics from the United States shows that the incidence of stroke has risen steadily among marijuana users even though the overall rate of stroke remained constant over the same period.

We need to talk about sexuality after stroke
Stroke survivors and their partners are not adequately supported to deal with changes to their relationships, self-identity, gender roles and intimacy following stroke, according to new research from the University of Sydney.

Standardized stroke protocol can ensure ELVO stroke patients are treated within 60 minutes
A new study shows that developing a standardized stroke protocol of having neurointerventional teams meet suspected emergent large vessel occlusion (ELVO) stroke patients upon their arrival at the hospital achieves a median door-to-recanalization time of less than 60 minutes.

Read More: Stroke News and Stroke Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.